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Abstract. In this paper, we have proposed an inverse model for linear fractional programming (LFP)
problems, in which the cost coefficients, technical coefficients and right hand side vector are adjusted
as little as possible so that the given feasible or infeasible solution becomes optimal. In our proposed
method, a nonnegative solution x0 is taken and have adjusted the model parameters as little as pos-
sible (under l1 or l2 measure) by taking following cases (i) adjusting cost coefficients (ii) adjusting
cost, constraint coefficients and right hand side vector (iii) adjusting cost and constraint coefficients
(iv) adjusting cost and right hand side vector. Complementary slackness conditions along with some
standard transformations and MATLAB is used for optimal solution. The method has been illustrated
by a numerical example also.
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1. Introduction

When solving an optimization problem, we assume that all the parameters associated with
the decision variable in the objective function and constraints set are known and our object
is to find the optimal solution. Practically it is difficult to determine all model parameters
with precision but it is plausible to call a solution x0 which is not optimal under the present
parameters and we wish to adjust some or all model parameters as less as possible so that x0

becomes an optimal solution.
Burton and Toint [5] were the first who investigate the inverse optimization for shortest

path problem under l2 norm, since then a lot of work has been done on inverse optimization
but most of the work is based on combinatorial optimization problems. Zhang and Liu [18]
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have first been calculated some inverse linear programming problem and further investigated
inverse linear programming problems in [19]. Ahuja and Orlin [1] provide various references
in the area of inverse optimization and compile several applications in network flow prob-
lems with unit weight and develop combinatorial proofs of correctness. Huang and Liu [10]
and Amin and Emrouznejad [2], have considered applications of inverse problem. Yibing,
Tiesong and Zhongping [17] worked on inverse optimal value problem. Zhang and Zhang
[20–22] worked on inverse quadratic programming problems, and Wang [16] has given the
cutting plane algorithm for inverse integer programming problem. Hladik [9] have first been
considered inverse problem for generalized linear fractional programming. They have shown
that how much data of a generalized linear fractional program can vary such that the optimal
values do not exceed some prescribed bounds.

The linear fractional programming problem seeks to optimize the objective function of
non-negative variables of quotient form with linear functions in numerator and denominator
subject to a set of linear and homogeneous constraints. Bajanilov [3] compiled the literature
of Linear Fractional Programming: Theory, Methods, Applications and Software in the form
of book. Chadha [6, 7], Charnes-Cooper [8], Kantiswarup [15], Naganathan and Sakthivel
[14], Jain and Mangal [11, 12], Jain, Mangal and Parihar [13], Borza, Rambely, and Saraj
[4] and many researchers gave different methods for solving linear fractional programming
problem.

In the following section, it has been described in brief how inverse optimization can be
applied on LFP problem. In our proposed method, first we have obtained the dual and comple-
mentary slackness conditions for LFP. For obtaining the required optimal solution by inverse
optimization; we adjust the model parameters as little as possible (under l1 or l2 measure).
Then applying the complementary slackness conditions along with some standard transfor-
mation the inverse LFP reduces to a non linear programming problem having large number
of variables. The reduced problem can be solved by the optimization software packages like
MATLAB, LINGO etc.

2. Mathematical Formulation of Inverse Linear Fractional Programming
Problem

The standard linear fractional programming problem is given as follows:

Maximize z =
Σ j∈J c j x j+c0

Σ j∈J d j x j+d0

Subject to , Σ j∈J ai j x j ≤ bi for all i ∈ I
x j ≥ 0 for all j ∈ J ,

(1)

where I denote the index set of constraints and J is the index set of decision variables. If it
is assumed that Σ j∈J d j x j + d0 > 0 in the feasible region, objective function is continuously
differentiable and the feasible set is regular then the dual of above LFP problem given by
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Chadha [7] is the following linear programming problem:

Minimize z
Subject to, Σi∈I ai j yi + d jz− v j = c j for all j ∈ J

−Σi∈I bi yi + d0z = c0
yi ≥ 0, v j ≥ 0 for all i ∈ I , j ∈ J ,

(2)

where yi is the dual variable associated with constraint in primal problem (1) and v j is the
dual variable associated with each x j ≥ 0.

We know by the optimality condition for LFP that the primal solution x and the dual
solution (y, v) are optimal for their respective problems if they satisfy the following comple-
mentary slackness condition:

If Σ j∈J ai j x j < bi then yi = 0
If x j > 0 then v j = 0.

(3)

If we have a feasible or infeasible solution x0 of the LFP problem then inverse problem is
to adjust the model parameters as less as possible so that x0 becomes an optimal solution of
the modified problem. Here we are considering four different cases of adjusting parameters.

2.1. Change in Cost Coefficients

Let us assume a feasible solution x0 and to transform it to an optimal one, we adjust the
cost coefficients c j to c′j and d j to d ′j . If we define B = {i : Σ j∈J ai j x

0
j = bi}, J1 = { j : x0

j = 0}
and J2 = { j : x0

j > 0}, then the complementary slackness conditions can be restate as:

yi = 0 for all i /∈ B
v j = 0 for all j ∈ J2.

(4)

The feasible solution x0 will be the optimal solution of the primal LFP problem (1), where
c j ’s and d j ’s are replaced with c′j ’s and d ′j ’s, if there exist a dual solution (y, v) that satisfy the
constraints of dual problem (2) where c j replaced by c′j and d j replaced by d ′j and both primal
dual pair satisfy the complementary slackness conditions. Using complementary slackness
conditions in the constraints of (2) provide us the following characteristics of the adjusted
cost vectors:

Σi∈Bai j yi + d ′jz− v j = c′j for all j ∈ J1

Σi∈Bai j yi + d ′jz = c′j for all j ∈ J2

−Σi∈B bi yi + d0z = c0
yi ≥ 0, v j ≥ 0 for all i ∈ B, j ∈ J .

(5)

Inverse problem is to minimize ‖d ′−d‖p and ‖c′−c‖p, where ‖.‖p is some selected lp norm

defined as ‖a− b‖p = [Σ|a j − b j|p]
1
p . We know that minimizing [Σ|a j − b j|p]

1
p is equivalent
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to minimizing Σ|a j − b j|p, so the inverse problem under lp norm is as follows:

Minimize [Σ j∈J |d ′j − d j|p +Σ j∈J |c′j − c j|p]
Subject to, Σi∈Bai j yi + d ′jz− v j = c′j for all j ∈ J1

Σi∈Bai j yi + d ′jz = c′j for all j ∈ J2

−Σi∈B bi yi + d0z = c0
yi ≥ 0, v j ≥ 0 for all i ∈ B, j ∈ J .

(6)

Let c′j = c j + α j − β j and α j ≥ 0 , β j ≥ 0 ,for all j ∈ J , where α and β are respective
increment and decrement in c. Here α jβ j = 0, i.e. α j and β j can never be positive at the
same time, similarly d ′j = d j + γ j − δ j , γ j ≥ 0 , δ j ≥ 0 and γ jδ j = 0 for all j ∈ J . Using
these transformations, minimizing |c′j − c j| and |d ′j − d j| is equivalent to minimize α j +β j and
γ j+δ j respectively, therefore the inverse linear fractional programming (ILFP) problem under
l1 norm is as follows:

Minimize Σ j∈J (α j + β j + γ j +δ j)
Subject to, Σi∈Bai j yi + (d j + γ j −δ j)z− v j = c j +α j − β j for all j ∈ J1

Σi∈Bai j yi + (d j + γ j −δ j)z = c j +α j − β j for all j ∈ J2
−Σi∈B bi yi + d0z = c0
yi , v j ,α j ,β j ,γ j ,δ j ≥ 0 for all i ∈ B, j ∈ J .

(7)

If we also want to modify the constant terms in numerator and denominator, then by
replacing c0 and d0 with c′0 and d ′0 and substituting c′0 = c0 + α0 − β0 and d ′0 = d0 + γ0 − δ0
in equation (7), the inverse linear fractional programming (ILFP) problem under l1 norm will
be as follows:

Minimize Σ j∈J∪{0}(α j + β j + γ j +δ j)
Subject to, Σi∈Bai j yi + (d j + γ j −δ j)z− v j = c j +α j − β j for all j ∈ J1

Σi∈Bai j yi + (d j + γ j −δ j)z = c j +α j − β j for all j ∈ J2
−Σi∈B bi yi + (d0+ γ0−δ0)z = c0+α0− β0
yi ≥ 0, v j ≥ 0 for all i ∈ B, j ∈ J
α j ,β j ,γ j ,δ j ≥ 0 for all j ∈ J ∪ {0}.

(8)

If we consider l2 norm then the inverse problem will be given as:

Minimize Σ j∈J∪{0}(α2
j + β

2
j + γ

2
j +δ

2
j )

Subject to, Σi∈Bai j yi + (d j + γ j −δ j)z− v j = c j +α j − β j for all j ∈ J1
Σi∈Bai j yi + (d j + γ j −δ j)z = c j +α j − β j for all j ∈ J2
−Σi∈B bi yi + (d0+ γ0−δ0)z = c0+α0− β0
yi ≥ 0, v j ≥ 0 for all i ∈ B, j ∈ J
α j ,β j ,γ j ,δ j ≥ 0 for all j ∈ J ∪ {0}.

(9)

2.2. Change in Cost, Constraint Coefficients and Right Hand Side Vector

Let us assume that x0 is an infeasible solution. In order to remove the infeasibility, we
have to adjust the parameters associated with x0 in the constraint set of primal problem (1).
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Let a′i j and b′i are the respective adjusted values of ai j and bi then by equation (1), we have

Σ j∈J a′i j x
0
j ≤ b′i . (10)

If c′j and d ′j are respective adjusted values of c j and d j (as defined in 2.1), then the con-
straint set of (6) with ai j replaced by a′i j along with (10) give us the following characteristics
of adjusted parameters:

Σi∈I a
′
i j yi + d ′jz− v j = c′j for all j ∈ J1

Σi∈I a
′
i j yi + d ′jz = c′j for all j ∈ J2

−Σi∈I b′i yi + d ′0z = c′0
Σ j∈J a′i j x

0
j ≤ b′i for all i ∈ I

yi ≥ 0, v j ≥ 0 for all i ∈ I , j ∈ J ,

(11)

where J1 and J2 are index sets as defined in previous section.
Let us define

a′i j = ai j +ηi j − ξi j ,ηi j ≥ 0,ξi j ≥ 0 and ηi jξi j = 0 for all i ∈ I , j ∈ J
and b′i = bi + pi − qi , pi ≥ 0, qi ≥ 0 and piqi = 0 for all i ∈ I .

(12)

Now the inverse problem is to find the adjusted values of parameters which are differ from
the original values of parameters as little as possible and make the given solution optimal,
therefore substituting the values of adjusted parameters in (11) and using l2 norm same as in
previous case, the inverse LFP problem can be formulated as:

Minimize Σ j∈J∪{0}(α2
j + β

2
j + γ

2
j +δ

2
j ) +Σi∈I(p2

i + q2
i ) +Σi∈IΣ j∈J (η2

i j + ξ
2
i j)

Subject to, Σi∈I(ai j +ηi j − ξi j)yi + (d j + γ j −δ j)z− v j = c j +α j − β j for all j ∈ J1
Σi∈I(ai j +ηi j − ξi j)yi + (d j + γ j −δ j)z = c j +α j − β j for all j ∈ J2
−Σi∈I(bi + pi − qi)yi + (d0+ γ0−δ0)z = c0+α0− β0
Σ j∈J (ai j +ηi j − ξi j)x0

j ≤ bi + pi − qi for all i ∈ I
yi , v j , pi , qi ,ηi j ,ξi j ≥ 0 for all i ∈ I , j ∈ J
α j ,β j ,γ j ,δ j ≥ 0 for all j ∈ J ∪ {0}.

(13)

2.3. Change in Cost Coefficients and Constraint Coefficients

If we want to adjust only the coefficients in the constraint set and objective function then
by substituting pi = qi = 0 in the equation (13), we get the inverse LFP problem.

2.4. Change in Cost Coefficients and Right Hand Side Vector

If we want to adjust only the coefficients in objective function and right hand side vector
then by substituting ηi j = ξi j = 0 in the equation (13), we get the inverse LFP problem.
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3. Numerical Example

Let us consider a primal LFP problem

Maximize z = 2x1+3x2+1
x1+x2+4

Subject to , x1+ x2 ≤ 4
3x1+ x2 ≤ 6
x1, x2 ≥ 0.

(14)

The optimal solution of this LFP is x1 = 0, x2 = 4 with the objective value z = 1.625. Let
us assume a feasible solution x0

1 = 1, x0
2 = 3 , and we want to make it an optimal solution

using inverse optimization. Here we can see that both the constraints are binding with respect
to x0 and also x0

1 > 0, x0
2 > 0, therefore by complementary slackness condition for LFP, the

dual constraints correspond to x1 and x2 will be binding i.e. v1 = 0, v2 = 0 and the dual
variable will be non negative. If we adjust only cost coefficients, then the inverse LFP problem
under l2 norm is as follows:

Minimize Σ2
j=0(α

2
j + β

2
j + γ

2
j +δ

2
j )

Subject to, Σ2
i=1ai j yi + (d j + γ j −δ j)z = c j +α j − β j , j = 1, 2
−Σ2

i=1 bi yi + (d0+ γ0−δ0)z = c0+α0− β0
yi ≥ 0, i = 1, 2 and α j ,β j ,γ j ,δ j ≥ 0, j = 0,1, 2.

(15)

Substituting the values and in the above equation and simplifying, we get the following
non linear programming problem:

Minimize (α2
0+ β

2
0 +α

2
1+ β

2
1 +α

2
2+ β

2
2 + γ

2
0+δ

2
0 + γ

2
1+δ

2
1 + γ

2
2+δ

2
2)

Subject to, y1+ 3y2+ (1+ γ1−δ1)z−α1+ β1 = 2
y1+ y2+ (1+ γ2−δ2)z−α2+ β2 = 3
−4y1− 6y2+ (4+ γ0−δ0)z−α0+ β0 = 1
y1, y2,α0,α1,α2,β0,β1,β2γ0,γ1,γ2,δ0,δ1,δ2 ≥ 0.

(16)

Optimal solution of the inverse problem using MATLAB is

α1 = 0.1876,δ1 = 0.2643,β2 = 0.1474,γ2 = 0.2077
δ0 = 0.0141,α0 = 0.01, y1 = 1.1512, z = 1.4087.

(17)

Using the values from equation (17) in the objective function of (14), we obtain the following
modified objective function of the LFP problem:

Maximize z = 2.1876x1+2.8526x2+1.01
0.7357x1+1.2077x2+3.9859

. (18)

If we consider an infeasible solution x1 = 2, x2 = 1 and adjust all the parameters together
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then the inverse problem under l2 norm is as follows:

Minimize (α2
0+ β

2
0 +α

2
1+ β

2
1 +α

2
2+ β

2
2 + γ

2
0+δ

2
0 + γ

2
1+δ

2
1 + γ

2
2+δ

2
2

+η2
11+ ξ

2
11+η

2
12+ ξ

2
12+η

2
21+ ξ

2
21+η

2
22+ ξ

2
22+ p2

1 + q2
1 + p2

2 + q2
2)

Subject to, (1+η11− ξ11)y1+ (3+η21− ξ21)y2+ (1+ γ1−δ1)z−α1+ β1 = 2
(1+η12− ξ12)y1+ (1+η22− ξ22)y2+ (1+ γ2−δ2)z−α2+ β2 = 3
−(4+ p1− q1)y1− (6+ p2− q2)y2+ (4+ γ0−δ0)z−α0+ β0 = 1
2η11− 2ξ11+η12− ξ12− p1+ q1 = 1
2η21− 2ξ21+η22− ξ22− p2+ q2 =−1
y1, y2,α0,α1,α2,β0,β1,β2γ0,γ1,γ2,δ0,δ1,δ2 ≥ 0
η11,ξ11,η12,ξ12,η21,ξ21,η22,ξ22, p1, q1, p2, q2 ≥ 0.

(19)

Optimal solution of this problem using MATLAB is

α1 = 0.1910,δ1 = 0.2348,β2 = 0.1495,γ2 = 0.1838,α0 = 0.0077
δ0 = 0.0094,η11 = 0.2196,η12 = 0.3610,ξ21 = 0.3333,ξ22 = 0.1668
q1 = 0.1999, p2 = 0.1667, y1 = 1.0254, z = 1.2290.

(20)

Using these values in (14), the modified LFP Problem is as follows:

Maximize z = 2.1910x1+2.8505x2+1.0077
0.7652x1+1.1838x2+3.9906

Subject to , 1.2196x1+ 1.3610x2 ≤ 3.8001
2.6667x1+ 0.8333x2 ≤ 6.1667
x1, x2 ≥ 0.

(21)

4. Particular Case

If we substitute d j = 0 for all j ∈ J and d0 = 1 in original problem, it reduces to linear
programming problem and our proposed method reduces for inverse linear programming
problem which is studied earlier by Orlin and Ahuja [1].

5. Conclusion

Inverse optimization is an important area in both academic research and practical appli-
cations. This paper gives a mathematical model to handle the situations of market when en-
terprise couldn’t response the market demand in time because of rigid treatment of resources.
An illustration observation used to demonstrate the advantage of the new approach.
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