%% This document created by Scientific Word (R) Version 2.5 %% Starting shell: article \documentclass[12pt,thmsb]{article} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsmath} \usepackage{sw20lart} \setcounter{MaxMatrixCols}{10} %TCIDATA{TCIstyle=article/art4.lat,lart,article} %TCIDATA{OutputFilter=LATEX.DLL} %TCIDATA{Version=5.50.0.2953} %TCIDATA{} %TCIDATA{BibliographyScheme=Manual} %TCIDATA{Created=Mon Jan 28 16:18:26 2008} %TCIDATA{LastRevised=Thursday, August 16, 2012 16:06:44} %TCIDATA{} %TCIDATA{Language=American English} \input{tcilatex} \begin{document} \author{A. O. Mostafa$^{1}$, M. K. Aouf$^{2}$, A. Shamandy$^{3}$ and E. A. Adwan$^{4}$ \\ %EndAName \\ Department of Mathematics, Faculty of Science, \\ Mansoura University, Mansoura 35516, Egypt\\ $^{1}$adelaeg254@yahoo.com,\ \ $\ \ \ ^{2}$mkaouf127@yahoo.com\\ $^{3}$\ shamandy16@hotmail.com,\ \ $^{4}$eman.a2009@yahoo.com} \title{ \textbf{Some Subordination and Superordination for the Wright Generalized Hypergeometric Function}} \date{} \maketitle \begin{abstract} In this paper, we obtain some subordination and superordination results for the Wright generalized hypergeometric function. Sandwich-type theorem for these multivalent function is also obtained. \end{abstract} \noindent \textbf{Keywords and phrases}: p-Valent functions, subordination, superordination, Wright generalized hypergeometric function. \noindent 2000 Mathematics Subject Classification: 30C45.\newline \noindent \bigskip {\LARGE 1.\quad Introduction} Let $H(U)$ be the class of functions analytic in $U=\{z\in %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion :|z|<1\}$ and $H[a,n]$ be the subclass of $H(U)$ consisting of functions of the form $f(z)=a+a_{n}z^{n}+$ $a_{n+1}z^{n+1}+...$, with $H_{0}=H[0,1]$ and $% H=H[1,1]$. Let $A\left( p\right) $ denote the class of all analytic functions of the form \begin{equation} f(z)=z^{p}+\sum_{n=1+p}^{\infty }a_{n}z^{n}\ \ \ \left( p\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion =\left\{ 1,2,3,...\right\} ;z\in U\right) . \tag{1.1} \end{equation}% Let $f$ and $F$ be members of $H(U)$. The function $f(z)$ is said to be subordinate to $F(z)$, or $F(z)$ is superordinate to $f(z)$, if there exists a function $\omega (z)$ analytic in $U$ with $\omega (0)=0$ and $|\omega (z)|<1(z\in U)$, such that $f(z)=F(\omega (z))$. In such a case we write $% f(z)\prec F(z)$. If $F$ is univalent, then $f(z)\prec F(z)$ if and only if $% f(0)=F(0)$ and $f(U)\subset F(U)$ $\left( \text{see }\left[ 12\right] \text{ and }\left[ 13\right] \right) $. Let $\phi :% %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion ^{2}\times U\rightarrow %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion $ and $h\left( z\right) $ be univalent in $U.$ If $p\left( z\right) $ is analytic in $U$ and satisfies the first order differential subordination:% \begin{equation} \phi \left( p\left( z\right) ,zp^{^{\prime }}\left( z\right) ;z\right) \prec h\left( z\right) , \tag{1.2} \end{equation}% then $p\left( z\right) $ is a solution of the differential subordination $% (1.2)$. The univalent function $q\left( z\right) $ is called a dominant of the solutions of the differential subordination $(1.2)$ if $p\left( z\right) \prec q\left( z\right) $ for all $p\left( z\right) $ satisfying $(1.2)$. A univalent dominant $\tilde{q}$ that satisfies $\tilde{q}\prec q$ for all dominants of $(1.2)$ is called the best dominant. If $p\left( z\right) $ and $\phi \left( p\left( z\right) ,zp^{^{\prime }}\left( z\right) ;z\right) $ are univalent in $U$ and if $p(z)$ satisfies first order differential superordination:% \begin{equation} h\left( z\right) \prec \phi \left( p\left( z\right) ,zp^{^{\prime }}\left( z\right) ;z\right) , \tag{1.3} \end{equation}% then $p\left( z\right) $ is a solution of the differential superordination $% (1.3)$. An analytic function $q\left( z\right) $ is called a subordinant of the solutions of the differential superordination $(1.3)$ if $q\left( z\right) \prec p\left( z\right) $ for all $p\left( z\right) $ satisfying $% (1.3)$. A univalent subordinant $\tilde{q}$ that satisfies $q\prec \tilde{q}$ for all subordinants of $(1.3)$ is called the best subordinant $\left( \text{% see }\left[ 12\right] \text{ and }\left[ 13\right] \right) $.\newline \noindent For analytic functions $f\left( z\right) \in A(p),$ given by (1.1) and $\phi \left( z\right) \in A(p)$ given by $\phi \left( z\right) =z^{p}+\sum\limits_{n=1+p}^{\infty }b_{n}z^{n}\ \ \left( p\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion \right) $, the Hadamard product (or convolution) of $f\left( z\right) $ \noindent and $\phi \left( z\right) $, is defined by \begin{equation} \left( f\ast \phi \right) \left( z\right) =z^{p}+\sum_{n=1+p}^{\infty }a_{n}b_{n}z^{n}=\left( \phi \ast f\right) \left( z\right) . \tag{1.5} \end{equation} Let $\alpha _{1},A_{1},...,\alpha _{q},A_{q}$\ and $\beta _{1},B_{1},...,\beta _{s},B_{s}$ $\left( q,s\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion \right) $ be positive real parameters such that \begin{equation*} 1+\sum_{j=1}^{s}B_{j}-\sum_{j=1}^{q}A_{j}\geq 0. \end{equation*} \noindent The Wright generalized hypergeometric function [21] (see also [20]) \begin{equation*} _{q}\Psi _{s}\left[ \left( \alpha _{1},A_{1}\right) ,...,\left( \alpha _{q},A_{q}\right) ;\left( \beta _{1},B_{1}\right) ,...,\left( \beta _{s},B_{s}\right) ;z\right] =_{q}\Psi _{s}\left[ \left( \alpha _{i},A_{i}\right) _{1,q};\left( \beta _{i},B_{i}\right) _{1,s};z\right] \end{equation*}% \noindent is defined by% \begin{equation*} _{q}\Psi _{s}\left[ \left( \alpha _{i},A_{i}\right) _{1,q};\left( \beta _{i},B_{i}\right) _{1,s};z\right] =\dsum\limits_{n=0}^{\infty }\frac{% \tprod\limits_{i=1}^{q}\Gamma \left( \alpha _{i}+nA_{i}\right) }{% \prod\limits_{i=1}^{s}\Gamma \left( \beta _{i}+nB_{i}\right) }.\frac{z^{n}}{% n_{!}}\ \ \ \left( z\in U\right) . \end{equation*}% \noindent If $A_{i}=1(i=1,...,q)$ and $B_{i}=1\left( i=1,...,s\right) ,$ we have the relationship: \begin{equation*} \Omega _{q}\Psi _{s}\left[ \left( \alpha _{i},1\right) _{1,q};\left( \beta _{i},1\right) _{1,s};z\right] =\text{ }_{q}F_{s}\left( \alpha _{1},...,\alpha _{q};\beta _{_{1}},...,\beta _{s};z\right) , \end{equation*}% \noindent where $_{q}F_{s}\left( \alpha _{1},...,\alpha _{q};\beta _{_{1}},...,\beta _{s};z\right) $ is the generalized hypergeometric function (see [20]) and \begin{equation} \Omega =\frac{\prod\limits_{i=1}^{s}\Gamma \left( \beta _{i}\right) }{% \prod\limits_{i=1}^{q}\Gamma \left( \alpha _{i}\right) }. \tag{1.6} \end{equation} \noindent The Wright generalized hypergeometric functions were invoked \ in the geometric function theory (see [16] and [17]). \noindent By using the generalized hypergeometric function Dziok and Srivastava [7] introduced a linear operator. In [6] Dziok and Raina and in [2] Aouf\ and Dziok \noindent extended this linear operator by using Wright generalized hypergeometric function. \noindent Aouf et al. [3] considered the following linear operator \begin{equation*} \theta _{p,q,s}\left[ \left( \alpha _{i},A_{i}\right) _{1,q};\left( \beta _{i},B_{i}\right) _{1,s}\right] :A(p)\rightarrow A(p), \end{equation*} \noindent defined by the following Hadamard product:% \begin{equation*} \theta _{p,q,s}\left[ \left( \alpha _{i},A_{i}\right) _{1,q};\left( \beta _{i},B_{i}\right) _{1,s}\right] f\left( z\right) =_{q}\Phi _{s}^{p}\left[ \left( \alpha _{i},A_{i}\right) _{1,q};\left( \beta _{i},B_{i}\right) _{1,s};z\right] \ast f\left( z\right) , \end{equation*} \noindent where $_{q}\Phi _{s}^{p}\left[ \left( \alpha _{i},A_{i}\right) _{1,q};\left( \beta _{i},B_{i}\right) _{1,s};z\right] $ is given by \begin{equation*} _{q}\Phi _{s}^{p}\left[ \left( \alpha _{i},A_{i}\right) _{1,q};\left( \beta _{i},B_{i}\right) _{1,s};z\right] =\Omega \text{ }z_{\text{ \ \ }q}^{p}\Psi _{s}\left[ \left( \alpha _{i},A_{i}\right) _{1,q};\left( \beta _{i},B_{i}\right) _{1,s};z\right] . \end{equation*}% \noindent We observe that, for a function $f\left( z\right) $ of the form $% \left( 1.1\right) ,$ we have% \begin{equation} \theta _{p,q,s}\left[ \left( \alpha _{i},A_{i}\right) _{1,q};\left( \beta _{i},B_{i}\right) _{1,s}\right] f\left( z\right) =z^{p}+\sum_{n=1+p}^{\infty }\Omega \sigma _{n,p}\left( \alpha _{1}\right) a_{n}z^{n}, \tag{1.7} \end{equation}% \noindent where $\Omega $ is given by $\left( 1.6\right) $ and $\sigma _{n,p}\left( \alpha _{1}\right) $ is defined by \begin{equation} \sigma _{n,p}\left( \alpha _{1}\right) =\frac{\Gamma \left( \alpha _{1}+A_{1}\left( n-p\right) \right) ...\Gamma \left( \alpha _{q}+A_{q}\left( n-p\right) \right) }{\Gamma \left( \beta _{1}+B_{1}\left( n-p\right) \right) ...\Gamma \left( \beta _{s}+B_{s}\left( n-p\right) \right) \left( n-p\right) !}. \tag{1.8} \end{equation}% \noindent If, for convenience, we write% \begin{equation*} \theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) =\theta _{p,q,s}\left[ \left( \alpha _{1},A_{1}\right) ,...,\left( \alpha _{q},A_{q}\right) ;\left( \beta _{1},B_{1}\right) ,...,\left( \beta _{s},B_{s}\right) \right] f\left( z\right) , \end{equation*}% \noindent then one can easily verify from $\left( 1.7\right) $ that \begin{equation*} zA_{1}\left( \theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) \right) ^{\prime }=\alpha _{1}\theta _{p,q,s}\left[ \alpha _{1}+1,A_{1},B_{1}\right] f\left( z\right) \end{equation*} \begin{equation} -(\alpha _{1}-pA_{1})\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) \ (A_{1}>0). \tag{1.9} \end{equation}% \newline For $p=1$, $\theta _{1,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] =\theta % \left[ \alpha _{1}\right] $ which\ was introduced by Dziok and Raina [6] and studied by \noindent Aouf and Dziok [2]. We note that, for $f\left( z\right) \in A(p),$ $A_{i}=1\left( i=1,2,...,q\right) $ and $B_{i}=1\left( i=1,2,...,s\right) ,$ we obtain $\theta _{p,q,s}\left[ \alpha _{1},1,1\right] f\left( z\right) =H_{p,q,s}[\alpha _{1}]f\left( z\right) ,$ where $% H_{p,q,s}[\alpha _{1}]$ is \noindent the Dziok-Srivastava operator (see [7]). We note also that, for $f\left( z\right) \in A(p),q=2$, $s=1$ and$\ A_{1}=A_{2}=B_{1}=1$, we have: \noindent (1) $\theta _{p,2,1}\left[ a,1;c\right] f\left( z\right) =L_{p}\left( a,c\right) f\left( z\right) $ $\ \left( a>0,c>0,p\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion \right) $ \ (see [18]);\newline \noindent (2) $\theta _{p,2,1}\left[ \mu +p,1;1\right] f\left( z\right) =D^{\mu +p-1}f\left( z\right) $ \ $\left( \mu >-p,p\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion \right) ,$ where $D^{\mu +p-1}f\left( z\right) $ is the $\left( \mu +p-1\right) -$the order Ruscheweyh derivative (see [8]);\newline \noindent (3) $\theta _{p,2,1}\left[ \nu +p,1;\nu +p+1\right] f\left( z\right) =F_{\nu ,p}(f)(z)$ \ \ $\left( \nu >-p,p\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion \right) $, where $F_{\nu ,p}\left( f\right) \left( z\right) $ is the generalized Bernardi-Libera-Livingston-integral operator (see \noindent \lbrack 5]);\newline \noindent (4) $\theta _{p,2,1}\left[ c,1;a\right] f\left( z\right) =I_{c,p}^{a}f\left( z\right) $ $\left( a\in %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion ,c\in %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion \backslash %TCIMACRO{\U{2124} }% %BeginExpansion \mathbb{Z} %EndExpansion _{0}^{-},p\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion \right) ,$where the operator $I_{c,p}^{a}$ was introduced and studied by AL-Kharasani and Al-Hajiry (see \noindent \lbrack 1])$;$\newline \noindent (5) $\theta _{p,2,1}\left[ p+1,1;n+p\right] f\left( z\right) =I_{n,p}f\left( z\right) $ $\left( n\in %TCIMACRO{\U{2124} }% %BeginExpansion \mathbb{Z} %EndExpansion ;n>-p,p\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion \right) ,$where the operator $I_{n,p}$ was introduced and studied by Liu and Noor (see [9]);\newline \noindent (6) $\theta _{p,2,1}\left[ \lambda +p,c;a\right] f\left( z\right) =I_{p}^{\lambda }\left( a,c\right) f\left( z\right) $ \ $\left( a,c\in %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion \backslash %TCIMACRO{\U{2124} }% %BeginExpansion \mathbb{Z} %EndExpansion _{o}^{-};\lambda >-p,p\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion \right) ,$ where $I_{p}^{\lambda }\left( a,c\right) $ is the Cho-Kwon-Srivastava operator (see [4]);\newline \noindent (7) $\theta _{p,2,1}\left[ 1+p,1;1+p-\mu \right] f\left( z\right) =\Omega _{z}^{\left( \mu ,p\right) }f\left( z\right) $ $\ \left( -\infty <\mu <1+p,p\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion \right) ,$ where the operator $\Omega _{z}^{\left( \mu ,p\right) }$ was introduced and studied by Patel and Mishra (see \noindent \lbrack 14]) and studied by Srivastava and Aouf [19] when $\left( 0\leq \mu <1\right) $.% \newline To prove our results, we need the following definitions and lemmas. \noindent \textbf{Definition 1} $\left[ 12\right] .$ \textit{Denote by }$% \tciFourier $\textit{\ the set of all functions }$q(z)$\textit{\ that are analytic and injective on }$\bar{U}\backslash E(q)$\textit{\ where}% \begin{equation*} E(q)=\left\{ \zeta \in \partial U:\lim_{z\rightarrow \zeta }q(z)=\infty \right\} , \end{equation*}% \textit{\noindent and are such that }$q^{^{\prime }}(\zeta )\neq 0$\textit{\ for }$\zeta \in \partial U\backslash E(q)$\textit{. Further let the subclass of }$\tciFourier $\textit{\ for which }$q(0)=a$\textit{\ be denoted by }$% \tciFourier (a)$\textit{, }$\tciFourier (0)\equiv \tciFourier _{0}$\textit{\ and }$\tciFourier (1)\equiv \tciFourier $\textit{.} \noindent \textbf{Definition 2} $\left[ 13\right] $. \textit{A function }$% L\left( z,t\right) $\textit{\ }$\left( z\in U,t\geq 0\right) $\textit{\ is said to be a subordination chain if }$L\left( 0,t\right) $\textit{\ is analytic and univalent in }$U$\textit{\ for all }$t\geq 0,L\left( z,0\right) $\textit{\ is \noindent continuously differentiable on }$\left[ 0;1\right) $% \textit{\ for all }$z\in U$\textit{\ and }$L\left( z,t_{1}\right) \prec L\left( z,t_{2}\right) $\textit{\ for all }$0\leq t_{1}\leq t_{2}$\textit{.} \noindent \textbf{Lemma 1 }$\left[ 15\right] $\textbf{.} \textit{The function }$L\left( z,t\right) :U\times $\textit{\ }$\left[ 0;1\right) \longrightarrow %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion $\textit{\ of the form}% \begin{equation*} L\left( z,t\right) =a_{1}\left( t\right) z+a_{2}\left( t\right) z^{2}+...\ \ \ \left( a_{1}\left( t\right) \neq 0;t\geq 0\right) , \end{equation*}% \textit{\noindent and }$\lim_{t\rightarrow \infty }\left\vert a_{1}\left( t\right) \right\vert =\infty $\textit{\ is a subordination chain if and only if}% \begin{equation*} \func{Re}\left\{ \frac{z\partial L\left( z,t\right) /\partial z}{\partial L\left( z,t\right) /\partial t}\right\} >0\ \ \ \left( z\in U,t\geq 0\right) . \end{equation*} \noindent \textbf{Lemma 2 }$\left[ 10\right] $. \textit{Suppose that the function }$H:% %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion ^{2}\rightarrow %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion $\textit{\ satisfies the condition} \begin{equation*} \func{Re}\left\{ H\left( is;t\right) \right\} \leq 0 \end{equation*}% \textit{\noindent for all real }$s$\textit{\ and for all }$t\leq -n\left( 1+s^{2}\right) /2$\textit{, }$n\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion .$\textit{If the function }$p(z)=1+p_{n}z^{n}+p_{n+1}z^{n+1}+...$\textit{\ is analytic in }$U$\textit{\ and }% \begin{equation*} \func{Re}\left\{ H\left( p(z);zp^{^{\prime }}(z)\right) \right\} >0\ \ \ \ \left( z\in U\right) , \end{equation*}% \textit{\noindent then }$\func{Re}\left\{ p(z)\right\} >0$\textit{\ for }$% z\in U.$ \noindent \textbf{Lemma 3} $\left[ 11\right] $. \textit{Let }$\kappa ,\gamma \in %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion $\textit{\ with }$\kappa \neq 0$\textit{\ and let }$h\in H(U)$\textit{\ with }$h(0)=c$\textit{. If }$\func{Re}\left\{ \kappa h(z)+\gamma \right\} >0\left( z\in U\right) ,$\textit{\ then the solution of the following differential \noindent equation:}% \begin{equation*} q\left( z\right) +\frac{zq^{^{\prime }}\left( z\right) }{\kappa q(z)+\gamma }% =h\left( z\right) ~\ \left( z\in U;q(0)=c\right) \end{equation*}% \textit{\noindent is analytic in }$U$\textit{\ and satisfies }$\func{Re}% \left\{ \kappa q(z)+\gamma \right\} >0$\textit{\ for }$z\in U$\textit{.} \noindent \textbf{Lemma 4} $\left[ 10\right] $. \textit{Let }$p\in \tciFourier (a)$\textit{\ and let }$q(z)=a+a_{n}z^{n}+a_{n+1}z^{n+1}+...$% \textit{be analytic in }$U$\textit{\ with }$q\left( z\right) \neq a$\textit{% \ and }$n\geq 1$\textit{. If }$q$\textit{\ is not subordinate to }$p$\textit{% , then there \noindent exists two points }$z_{0}=r_{0}e^{i\theta }\in U$% \textit{\ and }$\zeta _{0}\in \partial U\backslash E(q)$\textit{\ such that}% \begin{equation*} q(U_{r_{0}})\subset p(U);\ \ \ q(z_{_{0}})=p(\zeta _{0})\ \ \ \text{ and \ \ }z_{0}p^{^{\prime }}(z_{0})=m\zeta _{0}p^{^{\prime }}(\zeta _{0})\ \ \ \left( m\geq n\right) . \end{equation*} \noindent \textbf{Lemma 5} $\left[ 13\right] $. \textit{Let }$q\in H[a,1]$% \textit{\ and }$\phi :% %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion ^{2}\rightarrow %TCIMACRO{\U{2102} }% %BeginExpansion \mathbb{C} %EndExpansion $\textit{. Also set }$\phi \left( q\left( z\right) ,zq^{^{\prime }}\left( z\right) \right) =h\left( z\right) .$\textit{\ If }$L\left( z,t\right) =\phi \left( q\left( z\right) ,tzq^{^{\prime }}\left( z\right) \right) $\textit{\ is a subordination chain and \noindent }$q\in H[a,1]\cap \tciFourier (a)$% \textit{, then}% \begin{equation*} h\left( z\right) \prec \varphi \left( p\left( z\right) ,zp^{^{\prime }}\left( z\right) \right) \end{equation*}% \textit{\noindent implies that }$q\left( z\right) \prec p\left( z\right) $% \textit{. Furthermore, if }$\varphi \left( q\left( z\right) ,zq^{^{\prime }}\left( z\right) \right) =h\left( z\right) $\textit{\ has a univalent solution }$q\in \tciFourier (a)$\textit{, then }$q$\textit{\ is the best subordinant.\newline } \noindent {\LARGE 2.\quad Main results}\newline Unless otherwise mentioned, we shall assume in the reminder of this paper that, the parameters, $\eta >0,$ $\alpha _{1},A_{1},...,\alpha _{q},A_{q}$\ and $\beta _{1},B_{1},...,\beta _{s},B_{s}$ $\left( q,s\in %TCIMACRO{\U{2115} }% %BeginExpansion \mathbb{N} %EndExpansion \right) $ are \noindent positive real numbers and $z\in U$. \noindent \textbf{Theorem 1. }\textit{Let }$f,g\in A(p)$\textit{and }% \begin{equation} \func{Re}\left\{ 1+\tfrac{z\phi ^{^{\prime \prime }}\left( z\right) }{\phi ^{^{\prime }}\left( z\right) }\right\} >-\delta \ \ \ \ \ \ \left( \phi \left( z\right) =\left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1}+1,A_{1},B_{1}\right] g\left( z\right) }{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g\left( z\right) }\right) \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g\left( z\right) }{z^{p}}% \right) ^{\eta }\right) , \tag{2.1} \end{equation}% \textit{where }$\delta $\textit{\ is given by}% \begin{equation} \delta =\frac{A_{1}^{2}+\left( \eta \alpha _{1}\right) ^{2}-\left\vert A_{1}^{2}-\left( \eta \alpha _{1}\right) ^{2}\right\vert }{4\eta \alpha _{1}A_{1}}\qquad \left( z\in U\right) . \tag{2.2} \end{equation}% \textit{Then the subordination condition:}% \begin{equation} \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1}+1,A_{1},B_{1}\right] f\left( z\right) }{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }\right) \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}% \right] f\left( z\right) }{z^{p}}\right) ^{\eta }\prec \phi \left( z\right) , \tag{2.3} \end{equation}% \textit{implies that}% \begin{equation} \left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }{z^{p}}\right) ^{\eta }\prec \left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g\left( z\right) }{z^{p}}\right) ^{\eta }, \tag{2.4} \end{equation}% \textit{where }$\left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}% \right] g\left( z\right) }{z^{p}}\right) ^{\eta }$\textit{\ is the best dominant.} \noindent \textbf{Proof.} Let us define the functions $F(z)$ and $G(z)$ in $% U $ by% \begin{equation} F(z)=\left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }{z^{p}}\right) ^{\eta }\text{ \ \ \ and \ \ \ }G(z)=\left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g\left( z\right) }{z^{p}}\right) ^{\eta },\ \ \tag{2.5} \end{equation}% we assume here, without loss of generality, that $G(z)$\ is analytic, univalent on $\bar{U}$ and \begin{equation*} G^{^{\prime }}(\zeta )\neq 0\ \ \ \ \ \left( \left\vert \zeta \right\vert =1\right) . \end{equation*}% If not, then we replace $F(z)$ and $G(z)$ by $F(\rho z)$ and $G(\rho z)$, respectively, with $0<\rho <1.$ These new functions have the desired properties on $\bar{U}$, so we can use them in the proof of our result and the results would follow by letting $\rho \rightarrow 1.$ We first show that, if% \begin{equation} q\left( z\right) =1+\frac{zG^{^{\prime \prime }}\left( z\right) }{% G^{^{\prime }}\left( z\right) }\ \ \ \ , \tag{2.6} \end{equation}% then% \begin{equation*} \func{Re}\left\{ q\left( z\right) \right\} >0. \end{equation*}% From $\left( 1.9\right) $ and the definition of the functions $G,\phi ,$ we obtain that% \begin{equation} \phi \left( z\right) =G\left( z\right) +\frac{A_{1}}{\eta \alpha _{1}}% zG^{^{\prime }}\left( z\right) . \tag{2.7} \end{equation}% Differentiating both sides of $\left( 2.7\right) $ with respect to $z$ yields% \begin{equation} \phi ^{^{\prime }}\left( z\right) =\frac{A_{1}+\eta \alpha _{1}}{\eta \alpha _{1}}G^{^{\prime }}\left( z\right) +\frac{A_{1}}{\eta \alpha _{1}}% zG^{^{^{\prime \prime }}}\left( z\right) \ . \tag{2.8} \end{equation}% Combining $\left( 2.6\right) $ and $\left( 2.8\right) $, we easily get% \begin{equation} 1+\frac{z\phi ^{^{\prime \prime }}\left( z\right) }{\phi ^{^{\prime }}\left( z\right) }=q\left( z\right) +\frac{zq^{^{\prime }}\left( z\right) }{q\left( z\right) +\frac{\eta \alpha _{1}}{A_{1}}}=h(z)\ \ \ \ \left( z\in U\right) . \tag{2.9} \end{equation}% It follows from $\left( 2.1\right) $ and $\left( 2.9\right) $ that% \begin{equation} \func{Re}\left\{ h\left( z\right) +\frac{\eta \alpha _{1}}{A_{1}}\right\} >0\ \ \ \left( z\in U\right) . \tag{2.10} \end{equation}% Moreover, by using Lemma 3, we conclude that the differential equation $% \left( 2.9\right) $\ has a solution $q\left( z\right) \in H\left( U\right) $ with $h\left( 0\right) =q\left( 0\right) =1$. Let% \begin{equation*} H\left( u,v\right) =u+\frac{v}{u+\frac{\eta \alpha _{1}}{A_{1}}}+\delta , \end{equation*}% where $\delta $ is given by $\left( 2.2\right) $. From $\left( 2.9\right) $ and $\left( 2.10\right) $, we obtain$\ \func{Re}\left\{ H\left( q(z);zq^{^{\prime }}(z)\right) \right\} >0\ \left( z\in U\right) .$ \bigskip To verify the condition% \begin{equation} \func{Re}\left\{ H\left( iu;t\right) \right\} \leq 0\ \ \ \ \left( u\in %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion ;t\leq -\frac{1+u^{2}}{2}\right) , \tag{2.11} \end{equation}% we proceed as follows:% \begin{eqnarray*} \func{Re}\left\{ H\left( iu;t\right) \right\} &=&\func{Re}\left\{ iu+\frac{t% }{iu+\frac{\eta \alpha _{1}}{A_{1}}}+\delta \right\} =\frac{\frac{\eta \alpha _{1}}{A_{1}}t}{u^{2}+\left( \frac{\eta \alpha _{1}}{A_{1}}\right) ^{2}% }+\delta \\ &\leq &-\frac{\Omega \left( \alpha _{1},A_{1},u,\delta \right) }{% u^{2}+\left( \frac{\eta \alpha _{1}}{A_{1}}\right) ^{2}}, \end{eqnarray*}% where% \begin{equation} \Omega \left( \alpha _{1},A_{1},u,\delta \right) =\left[ \frac{\eta \alpha _{1}}{A_{1}}-2\delta \right] u^{2}-2\left( \frac{\eta \alpha _{1}}{A_{1}}% \right) ^{2}\delta +\frac{\eta \alpha _{1}}{A_{1}}. \tag{2.12} \end{equation}% For $\delta $\ given by $\left( 2.2\right) $, the coefficient of $u^{2}\ $in the quadratic expression $\Omega \left( \alpha _{1},A_{1},u,\delta \right) $% \ given by (2.12) is positive, which implies that (2,11) holds. Thus, by using Lemma 2, we conclude that% \begin{equation*} \func{Re}\left\{ q\left( z\right) \right\} >0\ \ \ \ \left( z\in U\right) , \end{equation*}% that is, that $G$ defined by (2.5) is convex (univalent) in $U$. To prove $% F\prec G$, where $F$ and $G$ given by (2.5), let the function $L(z;t)$ be defined by \begin{equation} L\left( z,t\right) =G\left( z\right) +\frac{A_{1}\left( 1+t\right) }{\eta \alpha _{1}}zG^{^{\prime }}\left( z\right) \ \ \ \left( 0\leq t<\infty ;z\in U\right) . \tag{2.13} \end{equation}% We note that \begin{equation*} \left. \frac{\partial L\left( z,t\right) }{\partial z}\right\vert _{z=0}=G^{^{\prime }}\left( 0\right) \left( \frac{A_{1}\left( 1+t\right) +\eta \alpha _{1}}{\eta \alpha _{1}}\right) \neq 0\ \ \ \ \left( 0\leq t<\infty ;z\in U\right) . \end{equation*}% This show that the function% \begin{equation*} L\left( z,t\right) =a_{1}\left( t\right) z+...\ , \end{equation*}% satisfies the condition $a_{1}\left( t\right) \neq 0\ \left( 0\leq t<\infty \right) .\ $Further, we have% \begin{equation*} \func{Re}\left\{ \frac{z\partial L\left( z,t\right) /\partial z}{\partial L\left( z,t\right) /\partial t}\right\} =\func{Re}\left\{ \frac{\eta \alpha _{1}}{A_{1}}+\left( 1+t\right) q\left( z\right) \right\} >0\ \ \ \left( 0\leq t<\infty ;z\in U\right) . \end{equation*}% Therefore, by using Lemma 1, $L\left( z,t\right) $ is a subordination chain. It follows from the definition of subordination chain that% \begin{equation*} \phi \left( z\right) =G\left( z\right) +\frac{A_{1}}{\eta \alpha _{1}}% zG^{^{\prime }}\left( z\right) =L\left( z,0\right) \end{equation*}% and% \begin{equation*} L\left( z,0\right) \prec L\left( z,t\right) \ \ \ \left( 0\leq t<\infty \right) , \end{equation*}% which implies that% \begin{equation} L\left( \zeta ,t\right) \notin L\left( U,0\right) =\phi \left( U\right) \ \ \ \left( 0\leq t<\infty ;\zeta \in \partial U\right) . \tag{2.14} \end{equation}% If $F$ is not subordinate to $G$, by using Lemma 4, we know that there exist two points $z_{0}\in U$ and $\zeta _{0}\in \partial U$ such that \begin{equation} F\left( z_{0}\right) =G\left( \zeta _{0}\right) \text{\ \ \ and\ \ \ }% z_{0}F^{^{\prime }}\left( z_{0}\right) =\left( 1+t\right) \zeta _{0}G^{^{\prime }}\left( \zeta _{0}\right) \ \ \ \left( 0\leq t<\infty \right) . \tag{2.15} \end{equation}% Hence, by using $(2.5)$, $\left( 2.13\right) $,$\left( 2.15\right) \ $and (2.3), we have% \begin{equation*} L\left( \zeta _{0},t\right) =G\left( \zeta _{0}\right) +\frac{A_{1}\left( 1+t\right) }{\eta \alpha _{1}}\zeta _{0}G^{^{\prime }}\left( \zeta _{0}\right) \end{equation*} \begin{equation*} =F\left( z_{0}\right) +\frac{A_{1}}{\eta \alpha _{1}}z_{0}F^{^{\prime }}\left( z_{0}\right) \end{equation*} \begin{equation*} =\left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1}+1,A_{1},B_{1}\right] f\left( z_{0}\right) }{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z_{0}\right) }\right) \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z_{0}\right) }{z_{0}^{p}}\right) ^{\eta }\in \phi \left( U\right) . \end{equation*}% This contradicts $\left( 2.14\right) $. Thus, we deduce that $F\prec G$. Considering $F=G$, we see that the function $G$ is the best dominant. This completes the proof of Theorem 1.\newline We now derive the following superordination result. \noindent \textbf{Theorem 2. }\textit{Let }$f,g\in A(p)\ $\textit{and }% \begin{equation} \func{Re}\left\{ 1+\frac{z\phi ^{^{\prime \prime }}\left( z\right) }{\phi ^{^{\prime }}\left( z\right) }\right\} >-\delta \ \ \ \ \left( \phi \left( z\right) =\left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1}+1,A_{1},B_{1}% \right] g\left( z\right) }{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}% \right] g\left( z\right) }\right) \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g\left( z\right) }{z^{p}}\right) ^{\eta }\right) , \tag{2.17} \end{equation}% \newline \textit{where }$\delta $\textit{\ is given by }$\left( 2.2\right) .$\textit{% \ If the\ function }$\left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1}+1,A_{1},B_{1}\right] f\left( z\right) }{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }\right) \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }{z^{p}}% \right) ^{\eta }$\textit{\ is univalent in }$U$\textit{\ and\ }$\left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }{z^{p}}\right) ^{\eta }\in \tciFourier ,$\textit{\ then the superordination condition}% \begin{equation} \phi \left( z\right) \prec \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1}+1,A_{1},B_{1}\right] f\left( z\right) }{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }\right) \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }{z^{p}}% \right) ^{\eta }, \tag{2.18} \end{equation}% \textit{implies that }% \begin{equation} \left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g\left( z\right) }{z^{p}}\right) ^{\eta }\prec \left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }{z^{p}}\right) ^{\eta }, \tag{2.19} \end{equation}% \textit{where }$\left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}% \right] g\left( z\right) }{z^{p}}\right) ^{\eta }$\textit{\ is the best subordinant.} \noindent \textbf{Proof. }Suppose that the functions $F,G$ and $q$ are defined by $\left( 2.5\right) $ and $\left( 2.6\right) $, respectively. By applying similar method as in the proof of Theorem 1, we get% \begin{equation*} \func{Re}\left\{ q\left( z\right) \right\} >0\ \ \ \ \left( z\in U\right) . \end{equation*}% Next, to arrive at our desired result, we show that $G\prec F$. For this, we suppose that the function $L\left( z,t\right) $ be defined by $\left( 2.13\right) $. Since $G$ is convex, by applying a similar method as in Theorem 1, we deduce that $L\left( z,t\right) $ is subordination chain. Therefore, by using Lemma 5, we conclude that $G\prec F$. Moreover, since the differential equation% \begin{equation*} \phi \left( z\right) =G\left( z\right) +\frac{A_{1}}{\eta \alpha _{1}}% zG^{^{\prime }}\left( z\right) =\varphi \left( G\left( z\right) ,zG^{^{\prime }}\left( z\right) \right) \end{equation*}% has a univalent solution $G$, it is the best subordinant. This completes the proof of Theorem 2.\newline Combining \ Theorem 1 and Theorem 2, we obtain the following "sandwich-type result". \noindent \textbf{Theorem 3.}\textit{\ Let }$f,g_{j}\in A(p)$\textit{\ and }% \begin{equation*} \func{Re}\left\{ 1+\frac{z\phi _{j}^{^{\prime \prime }}\left( z\right) }{% \phi _{j}^{^{\prime }}\left( z\right) }\right\} >-\delta , \end{equation*} \begin{equation*} \left( \phi _{j}\left( z\right) =\left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1}+1,A_{1},B_{1}\right] g_{j}\left( z\right) }{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g_{j}\left( z\right) }\right) \left( \tfrac{% \theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g_{j}\left( z\right) }{% z^{p}}\right) ^{\eta }\ \ \left( j=1,2\right) \right) \end{equation*}% \textit{where }$\delta $\textit{\ is given by }$\left( 2.2\right) .$\textit{% \ If the function }$\left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1}+1,A_{1},B_{1}\right] f\left( z\right) }{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }\right) \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }{z^{p}}% \right) ^{\eta }$\textit{\ is univalent in }$U$\textit{\ and }$\left( \frac{% \theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }{z^{p}% }\right) ^{\eta }\in \tciFourier ,$\textit{\ then the condition}% \begin{equation} \phi _{1}\left( z\right) \prec \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1}+1,A_{1},B_{1}\right] f\left( z\right) }{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }\right) \left( \tfrac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }{z^{p}}% \right) ^{\eta }\prec \phi _{2}\left( z\right) , \tag{2.20} \end{equation}% \textit{implies that}% \begin{equation} \left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g_{1}\left( z\right) }{z^{p}}\right) ^{\eta }\prec \left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] f\left( z\right) }{z^{p}}% \right) ^{\eta }\prec \left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g_{2}\left( z\right) }{z^{p}}\right) ^{\eta }, \tag{2.21} \end{equation}% \textit{where }$\left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}% \right] g_{1}\left( z\right) }{z^{p}}\right) ^{\eta }$\textit{\ and }$\left( \frac{\theta _{p,q,s}\left[ \alpha _{1},A_{1},B_{1}\right] g_{2}\left( z\right) }{z^{p}}\right) ^{\eta }$\textit{\ are , respectively, the best subordinant and the best dominant.}\bigskip \noindent \textbf{Remark 1.} \textit{Specializing }$\ q$\textit{, }$s,\alpha _{1},A_{1},...,\alpha _{q},A_{q}$\textit{\ and }$\beta _{1},B_{1},...\beta _{s},B_{s},$\textit{\ in the above results, we obtain the corresponding results for different classes associated with\ the operators (1-7) defined in the introduction.}\newline \noindent {\LARGE References} \noindent \lbrack 1] H. A. Al-Kharasani and S.S. Al-Hajiry, A linear operator and its applications on p-valent functions, Internat. J. Math. Analysis, (2007), 627-634. \noindent \lbrack 2] M. K. Aouf and J. Dziok, Certain class of analytic functions associated with the Wright generalized hypergeometric function, J. Math. Appl. 30(2008), 23-32. \noindent \lbrack 3] M. K. Aouf, A. Shamandy, A. O. Mostafa and S. M. Madian, Certain class of p-valent functions associated with the Wright generalized hypergeometric function, Demonstratio Math., (2010), no. 1, 40-54. \noindent \lbrack 4] N. E. Cho, O.S. Kwon and H.M. Srivastava, Inclusion and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl., 292 (2004), 470--483. \noindent \lbrack 5] J. H. Choi, M. Saigo and H.M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl., 276 (2002), no.1, 432--445. \noindent \lbrack 6] J. Dziok and R. K. Raina, Families of analytic functions associated with the Wright generalized hypergeometric function, Demonstratio Math., 37(2004), no.3, 533-542. \noindent \lbrack 7] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1--13. \noindent \lbrack 8] R.M. Goel and N.S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc., 78 (1980), 353--357. \noindent \lbrack 9] J.-L. Liu and K.I. Noor, Some properties of Noor integral operator, J. Natur. Geom., 21 (2002), 81--90. \noindent \lbrack 10] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), no. 2, 157--172. \noindent \lbrack 11] S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), no. 3, 297--309. \noindent \lbrack 12] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000. \noindent \lbrack 13] S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48(2003), no.10, 815--826. \noindent \lbrack 14] J. Patel and A.K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl., 332 (2007), 109--122. \noindent \lbrack 15] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, G$\overset{..}{o}$ttingen, 1975. \noindent \lbrack 16] R. K. Raina, On certain classes of analytic functions and application to fractional calculas operator, Integral Transform. Spec. Funct. 5(1997), 247-260. \noindent \lbrack 17] R. K. Raina and T. S. Nahar, On univalent and starlike Wright generalized hypergeometric functions, Rend. Sen. Mat. Univ. Padova 95(1996), 11-22 \noindent \lbrack 18] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon., 44 (1996), 31--38. \noindent \lbrack 19] H. M. Srivastava and M.K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I, J. Math. Anal. Appl., 171 (1992), 1-13; II, J. Math. Anal. Appl., 192 (1995), 673-688. \noindent \lbrack 20] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Ltd., Chichester, Halsted Press (John Wiley \& Sons, Inc.), New York, 1985. \noindent \lbrack 21] E. M. Wright, The asymptotic expansion of the generalized hypergeometric functions, Proc. London Math. Soc. 46(1946), 389-408. \end{document}