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Abstract. Two unit speed searchers at (0,0) seek for a Conditionally Deterministic moving target in

the plane in which any time information of the target position is not available to the searchers. The

objective is to find the conditions under which the expected value of the first meeting time for the

searchers to return to (0,0) after one of them has met the target is finite. And, to show the existence of

an optimal search plan which made the expected value is minimum. In addition, we find the necessary

conditions that make the search strategy be optimal.
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1. Introduction

Searching for a lost target is often a time-critical issue, that is, when the target is very

important such as searching for a bomb in the plane or a life raft on the ocean. The prime

focus is to find and search for the cast ways in the smallest possible a mount of time.

In an earlier work, the coordinated search technique is used on the line when the located

target has symmetric or unsymmetric distribution (see Mohamed et al. [8] and Reyniers

[10, 11]. This searching problem is the same as the problem which illustrated by Thomas

[13] on the circle with a given radius when the target equally likely to be anywhere on its

circumference. Recently, Mohamed et al. [7, 9] have been illustrated this technique in the

plane when the located target has symmetric and asymmetrric distribution.

More in an earlier work, the searching problem for a moving target in the plan like missing

boats, submarines and missing system has been studied by applying many search techniques

such as Bayesian Search and Tracking (SAT). The Bayesian approach would formulate for a

target whose prior distribution and probabilistic motion model are known and generalized the

approach for coordinated multi-vehicle search [Bourgault et al. 3, 4]. Similarly, the tracking
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study commenced with a simple feedback motion tracking algorithm, and has evolved with

the developments of a number of recursive filtering techniques [Furukawa et al. 6].

This paper considers search for target having a rather simple type of motion called Con-

ditionally Deterministic. The target’s motion takes place in Euclidean 2−space and depends

on a 2−dimensional stochastic parameter. If this parameter were known, then the target’s

position would be known at all times in the future. Thus, the target’s motion is Deterministic

Conditioned on knowledge of the parameter.

Conditionally Deterministic motion is more restrictive than Markovian motion. However,

the class of Conditionally Deterministic target motions is still rich enough to contain interest-

ing and important search problems. In addition, there are many situations in which optimal

search plans can be found explicitly for targets with Conditionally Deterministic motion. This

is in contrast to the situation of Markovian motion, where optimal search plans have been

found only in the simplest situations.

The primary concern of this paper thus lies in the coordinated search technique which

allows two searchers S1 and S2 start together and look for a Deterministic moving target with

the objective of minimizing the expected time until both of them are met with it at some

agreed meeting point. The meeting point is the point where the searchers check back after

each period of searching to find out if the other searcher has already found or met the lost

target. In addition, S1 and S2 do not have to come back to the meeting point to exchange

information about the target. In this coordinated system the target reported position is (0,0)

(the meeting point), that is, the center of the plane as indicated in Figure 1.

(a) (b)

Figure 1: The two search paths that will give us the case of search when we consider all

relative positions of the starting point (0, 0) and the moving target.

The plane is divided by two roads and they intersect at the center of this plane, one of

these roads is vertical (x2−axis) and the other is horizontal (x1−axis). The searchers go on

x2-axis (+ve and −ve parts) as in the following parts with equal speeds (u1 = u2 = 1), they

search the sectors and its tracks with "regular speed" β and they return to (0,0) after searching

successively through the two-axis (+ve and −ve parts) until the target be met. Any track i
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has width ai − ai−1 and bi − bi−1 in the right and the left part of x2−axis, respectively. Our

aim is to obtain the expected value of the first meeting time for detecting the target; also we

wish to find the optimal search plan (O.S.P.) to met it.

The rest of the paper is organized as follows. In Section 2, we describe the search problem.

In Section 3 we discuss the assumptions that model the search problem and we find the

condition which make the expected value of the first meeting time be finite. Section 4, studies

the existence of optimal search plan. Section 5 gives the necessary conditions which make the

search plan be optimal. Finally, conclusions and ongoing research directions are highlighted

in Section 6, and the appendix contains the mathematical proofs.

2. Description of the Search Problem

Let X be the plane. At time 0 the target’s location is given by a probability density function

p. The target’s motion is a simple translation described by a function,

η : X × [0,∞) −→ X ,

such that η(x , t) gives the target’s position at time t given that it was at point x at time 0;

that is,

η(x , t) = (x1+ vt, x2) for x = (x1, x2) ∈ X , t ≥ 0, (1)

where v gives the constant speed of the translation [Stone 12]. This situation might occur

on the ocean if the target is a life raft known to be drifting with a constant velocity but his

initial position is unknown. In this case an optimal search may be obtained by first solving the

problem for the stationary case and then moving, the optimal allocation of effort along with

the drift of the target distribution.

To be more precise, let the cumulative effort function M be given and suppose φ ∈ Φ(M).
Let

φ̇(x , t) =
∂ φ(x , t)

∂ t
for x ∈ X , t ≥ 0,

when the partial derivative on the right exists, that is, φ̇ indicates the derivative of φ with

respect to time. Assume φ̇ exists and

φ(x , t) =

t
∫

0

φ̇(x , s)ds for x ∈ X , t ≥ 0.

Therefore, φ̇(x , t) gives the rate at which effort density is accumulating at x at time t. If

the target motion is given by (1) and φ is uniformly optimal for the stationary problem, then

at time t we want to apply effort at the rate φ̇(x , t) to the point (x1 + vt, x2). From this it is

clear that if one fixes a point y ∈ X , then ψ(y, t), the rate at which effort density is applied at

y = (y1, y2) at time t in the uniformly optimal plan is given by,

ψ(y, t) = φ̇
�

(y1− vt, y2), t
�

= φ̇(η−1
t (y), t) for y ∈ X , t ≥ 0,
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where ηt denotes the transformation η(., t) and η−1
t is the inverse map of ηt .

Observing that if the target starts at point x at time 0, thenψ(ηs(x), s) is the rate at which

effort density is accumulating on the target at time s and

t
∫

0

ψ(ηs(x), s)ds gives the total effort

density accumulated by time t. As a result, the probability of detecting the target by time t is

∫

X

p(x)Λ









x ,

t
∫

0

ψ(ηs(x), s)ds









d x . (2)

Definition 1. Assume that the target motion take place in the space E, which is a copy of Eu-

clidean 2−space. The space X , also a copy of Euclidean 2−space, is the parameter space. To

prescribe the target motion, this is a Borel function η : X × T −→ E, where T is an interval of

nonnegative real numbers containing 0 as its left-hand endpoint. The target motion is character-

ized by a stochastic parameter ξ that takes values in X , that is, if ξ = x, then η(x , t) gives the

target’s position at time t. The distribution of the parameter ξ is given by the probability density

function p, so that:

Pr{ξ ∈ S} =

∫

S

p(x)d x ,

for any Borel set S ⊂ X . In this case, we call that a target has Conditionally Deterministic motion

[Stone 12].

Often one takes X = E and considers ξ as the position of the target at time 0, which has a

probability distribution specified by p.

3. Modeling of Search Problem and Formulation

Here, assumptions of the coordinated search problem with S1 and S2 for a Conditionally

Deterministic moving target are described and the problem is mathematically formulated as

an allocation of searching effort that is the expected value of the first meeting time between

any one of the searchers and the target. The surface of the plane be a "Standard Euclidean

2-space E", with points designated by ordered pairs (x1, x2). We shall divide the plane to

many sectors as in Figure 1.

Figure 1 gives an illustration of such search paths. The search process is continuous space

and time. It is clear that, the two searchers go different distances on x2−axis because the

target moves randomly in the plane. Then, the two searchers should go different distances

through x2−axis and search the two parts as in the following: The searcher S1 would conduct

his search in the right part as in the following manner:

I. Start at (0,0) and go to the −ve part of x2-axis until reach the point (0,−a1).

II. Search the sector h1 and its track until the search reaches the point (0, a1) on x2-axis.

Then S1 returns to (0,0) to tell S2 if the target be met or not.
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III. If the target did not meet, S1 would repeat the steps I and II. But, in II when the search

reaches the point (0, a1), S1 will go to a distance a2 − a1 through x2-axis to the point

(0, a2) and search the sector h2 until reaches the point (0,−a2). Then S1 returns to (0,0)

to tell S2 if the target be met or not.

IV. If the target is still not met by any one of the searchers, the steps I-III will be repeated.

However, in III when the search reaches the point (0,−a2) S1 will go to a distance a3−a2

through x2-axis to the point (0,−a3) and search the sector h3 until reaches the point

(0, a3). Then S1 returns to (0,0) to tell S2 if the target be met or not, and etc.

Therefore, the search path of S1 is given as follows:

e1 =
�

�a1

�

�+ h1+
�

�a1

�

� .

e2 =
�

�a1

�

�+ h1+
�

�a2− a1

�

�+ h2+
�

�a2

�

� .

e3 =
�

�a1

�

�+ h1+
�

�a2− a1

�

�+ h2+
�

�a3− a2

�

�+ h3+
�

�a3

�

� .

. . .

en =
�

�a1

�

�+ h1+
�

�a2− a1

�

�+ h2+
�

�a3− a2

�

�+ h3+
�

�a4− a3

�

�+ . . .+
�

�an− an−1

�

�+ hn+
�

�an

�

� .

. . .

and it is defined by a sequence,

e =







ei =
�

�a1

�

�+

i−1
∑

j=1

�

h j +
�

�a j+1− a j

�

�

�

+ hi +
�

�ai

�

� , for i ≥ 0 and i an integer







.

By the same method, S2 will go in the first step to the +ve part of x2-axis as far as b1 to

the point (0, b1), and conduct his search in the left part with search path given by,

f1 =
�

�b1

�

�+ g1+
�

�b1

�

� .

f2 =
�

�b1

�

�+ g1+
�

�b2− b1

�

�+ g2+
�

�b2

�

� .

f3 =
�

�b1

�

�+ g1+
�

�b2− b1

�

�+ g2+
�

�b3− b2

�

�+ g3+
�

�b3

�

� .

. . .

fn =
�

�b1

�

�+ g1+
�

�b2− b1

�

�+ g2+
�

�b3− b2

�

�+ g3+
�

�b4− b3

�

�+ . . .+
�

�bn− bn−1

�

�+ gn+
�

�bn

�

� .

. . .

and it is defined by a sequence,

f =







fi =
�

�b1

�

�+

i−1
∑

j=1

�

g j +
�

�b j+1− b j

�

�

�

+ gi +
�

�bi

�

� , for i ≥ 0 and i an integer







.
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Since, S1 and S2 search on the x2−axis with speed equal to one and on the sectors and

its tracks with regular speed β in the two parts. Then, S1 and S2 start from (0,0) following

search plans which are the functions:

γ(1)(t) : R −→ R+ and γ(2)(t) : R −→ R+, respectively. And, they are completely defined

by the sequences,

γ(1)(t) =







i
∑

j=1





n
∑

k=1

a jθk



+ 2ai , i ≥ 0







,

and

γ(2)(t) =







i
∑

j=1





n
∑

k=1

b jθk



+ 2bi , i ≥ 0







.

Assuming that the searchers speeds β are very larger than the target’s speed v. In addition,

the target motion is independent of the search, and that is not specifically directed toward

escape. In this problem, let the target speed is v = 1. Then, the search plan γ(ε)(t),ε= 1,2 is

finite, if:

γ(1)(t)≥ E(
�

�X 0
1 X 0

2

�

�) + t,

and

γ(2)(t)≥ E(
�

�X 0
1 X 0

2

�

�) + t,

where E(
�

�X 0
1 X 0

2

�

�) is the second order moment of the target initial position and it is finite.

Remark 1. The repeat of the searching process on the searching area is the minimization of the

probability of escaping the target.

After searching, if S1 returns to (0,0) before S2 then S1 will wait at (0,0) until S2 returns

also to (0,0) and told if the target be found or not. If S1 and S2 didn’t find the target they

search to right and left and again they return to (0,0) and so on until one of them find the

target.

The first meeting time τ(γ) is a random variable valued in R+ which is defined as:

τ(γ) =

(

inf
¦

t : either τ(γ(1)) = η(x , t) or τ(γ(2)) = η(x , t) , x = (x1,x2) ∈ X
©

,

∞, if the set is empty.

The target’s motion is taken place in Euclidean 2−space and is determined by a 2-dimensional

stochastic parameter ξ such as the target’s position at time 0. There is a target motion func-

tion η such that if ξ = x , then η(x , t) gives the target’s position at time t for t ≥ 0. Thus,

the target motion is deterministic when conditioned on the value of ξ. The distribution of ξ

is assumed to be known to the searchers and is given by the probability density function p.

A moving target search plan is a functionψ such thatψ(x , t) gives the rate at which effort

density accumulates at point x at time t. There is a detection function Λ such that if ξ = x
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and the search plan ψ is followed, then Λ

�

t
∫

0

ψ(ηs(x), s)ds

�

is the probability of detecting

the target by time t.

Therefore, (2) becomes,

∫

x2

∫

x1

p(x1, x2)Λ









x1, x2;









t
∫

0

ψ(ηs(x1, x2), s)ds

















d x1d x2 (3)

Since each sector is divided into an equal small sectors lk, k = 1,2, . . . , n, where these

sectors make a set of an equal cones have the same vertex (0,0) as in Figure 2. However,

the searchers can cover a tracks with width ai − ai−1 and bi − bi−1, respectively, each one

can cover an equal small areas from cones in the track number i. The cones is determined

by a set of lines with equations x1 = Fk x2 = tanθ x2, where Fk is the slope of the line

lk and θ = θk − θk−1, k = 1,2, . . . , n. This set of equations make a set of an equal small

areas, by which we are meaning for the moment that the searcher searches for every thing

from his position, and nothing beyond that. Thus, to evaluate the expected value of the

first meeting time between one of the searchers and the target, we use the polar coordinates

with x1 = r cosθ and x2 = r sinθ , r : ai−1 −→ ai , i = 1,2,3, . . .. in the right part and

r : bi−1 −→ bi , i = 1,2,3, . . ., in the left part, θ : θk−1 −→ θk, k = 1,2,3, . . . , n, where

a0 = b0 = r0 = 0, θ0 = 0. Hence, (3) becomes:

∫

θ

∫

r

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ (4)

Figure 2: The small search area that made by small sectors lk, k = 1,2, . . . , n made by the

searchers inside the circles with radiuses ai and bi , i = 2,3, . . .

Let tq,q = 1,2 be the time that S1 and S2 take them in the search paths
�

ei , i ≥ 0 and i is an integer number
	

and
�

fi , i ≥ 0 and i is an integer number
	

in the right
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and the left parts respectively to (0,0). They go on x2-axis from the origin before search-

ing the sectors. They return after finishing on the sectors to the origin with equal speeds
�

u1 = u2 = 1
�

. In this case, the time of going through x2-axis is equal to the distances which

done. They are searching on the sectors hi , gi , i = 1,2, . . .. and its tracks (searching areas of

the sectors) with "regular speed" β . Let τ(γ) be the time of the first meeting between one of

the searchers and the target.

Theorem 1. The expected value of the first meeting time for the searchers to return to the point

(0,0) after one of them has met the Conditionally Deterministic moving target is finite if:

∞
∑

i=1











i
∑

j=1











n
∑

k=1











θk
∫

θk−1

b j
∫

b j−1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θk
∫

θk−1

a j
∫

a j−1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









×



2(a j + b j) +

j
∑

α=1

 

�

aα+ bα
�

n
∑

k=1

θk

!







)

(5)

is finite.

The proof of Theorem 1 is in the Appendix.

Corollary 1. In the case of a located target, the searchers are not needing to repeat the searching

process in the searching area again. More interesting results have been got by Mohamed et al.

[9], that gives the expected value of the meeting time for the searchers to return the origin after

one of them has detected the target. Therefore, (5) becomes,

E(t(ψ)) =

∞
∑

i=1









�

2ai +
π

ωi

�









∞
∑

s=i

n
∑

k=1

bs
∫

bs−1

θk
∫

θk−1

g(r,θ )rdrdθ









+

�

2bi +
π

Γi

�









∞
∑

s=i

n
∑

k=1

as
∫

as−1

θk
∫

θk−1

g(r,θ )rdrdθ

















, (6)

where ωi and Γi are called the angular velocity in the right and the left parts, respectively.

Furthermore, if ai = bi , i = 1,2, . . . then ωi = Γi and the expected value of the time for the

searchers to return the origin after one of them has detected the target is [Mohamed et al. 7],

E(t(ψ)) =

∞
∑

i=1









�

4ai +
2π

ωi

�









∞
∑

s=i

n
∑

k=1

bs
∫

bs−1

θk
∫

θk−1

g(r,θ )rdrdθ

















. (7)
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3.1. Special Cases

Case 1

If the width in the right part is fixed (i.e. ai − ai−1 = a), then a1 = a, a2 = 2a, a3 = 3a, . . ., in

(5). Therefore, the expected value of the first meeting time is finite if:

∞
∑

i=1











i
∑

j=1











n
∑

k=1











θk
∫

θk−1

b j
∫

b j−1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θk
∫

θk−1

ja
∫

( j−1)a

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









×



2( ja+ b j) +

j
∑

α=1

 

�

αa+ bα
�

n
∑

k=1

θk

!







)

, (8)

is finite.

Case 2

If the width in the left part is fixed (i.e. bi − bi−1 = b), then b1 = b, b2 = 2b, b3 = 3b, . . ., in

(5). Thus, the expected value of the first meeting time is finite if:

∞
∑

i=1











i
∑

j=1











n
∑

k=1











θk
∫

θk−1

j b
∫

( j−1)b

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θk
∫

θk−1

a j
∫

a j−1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









×



2(a j + j b) +

j
∑

α=1

 

�

aα+αb
�

n
∑

k=1

θk

!







)

, (9)

finite.
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Case 3

If the width in the two parts are fixed (i.e. ai−ai−1 = a and bi− bi−1 = b), then the expected

value of the first meeting time is finite if:

∞
∑

i=1











i
∑

j=1











n
∑

k=1











θk
∫

θk−1

j b
∫

( j−1)b

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θk
∫

θk−1

ja
∫

( j−1)a

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









×



2 j(a+ b) +

j
∑

α=1

 

α (a+ b)

n
∑

k=1

θk

!







)

, (10)

is finite.

4. Existence of an Optimal Search Plan

The goal of the searching strategy could be minimized the expected value of the first

meeting time between one of the searchers and the target. Then, the main problem is to find

a search paths γ(ε)(t), ε= 1,2. If such a search paths exists, we call it O.S.P.

Definition 2. Let
¦

γ(ε)m (t)
©

m≥1
∈ Γ1(t), ε = 1,2 be sequences of search plans, we say that

γ(ε)m (t) converges to γ(ε)(t) as m tends to ∞ if and only if any t ∈ R+, γ(ε)m (t) converges to

γ(ε)(t) uniformly on every compact space [5, El-Rayes et. al.].

Theorem 2. Let for any t ∈ R+ and D(t) be a Conditionally Deterministic process with contin-

uous sample paths. Then, the mapping

(γ(1)(t),γ(2)(t))−→ E(τγ) ∈ R
+,

is lower semi-continuous on Γ1(t).

Proof. Let I(γ(ε), t) be the indicator function of the set
¦

τγ(ε) > t, ε= 1,2
©

, by the Fatou-

Lesbesque theorem [Stone 12] we obtain,

E(τγ) = E





∞
∑

t=1

I(γ(ε), t)



 = E





∞
∑

t=1

lim
m→∞

inf I(γ(ε)m , t)



 ≤
∞
∑

t=1

lim
m→∞

inf E(τγm
),

for any sequences γ(ε)m −→ γ
(ε) in Γ1(t), where Γ1(t) is sequentially compact [5, El-Rayes et.

al.]. Thus, the mapping γ(ε) −→ E(τγ) is lower semi continuous mapping on Γ1(t), then this

mapping attains its minimum.
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5. Necessary Conditions for Optimal Search Plan

Definition 3. Let γ∗ ∈ Ω be a search plan, then γ∗ is an optimal search plan, if

E(t(γ∗)) = inf
�

E(t(γ)),γ ∈ Ω
	

.

γ(ε)∗(t),ε= 1,2 are optimal search paths if the sequences a = {ai i ≥ 0} and

b = {bi; i ≥ 0} are optimal sequences, i.e., a∗ = {a∗i ; i ≥ 0} and b∗ = {b∗i ; i ≥ 0}. The problem

is to find which values of the turning points ai and bi are optimal for a given distribution

function of stochastic parameter ξ. There is obviously some similarity between this problem

and the well known Linear Search Problem which had been studied before by Balkhi [1, 2].

In that problem, the two searchers are starting at zero and moving with speed one, aims to

minimize the expected value of some function of the time taken to meet an object moving

according to a Conditionally Deterministic motion in the plane. An optimizing searcher goes

to successively increasing distances in alternating directions until the object had met. In our

problem, any searcher wishes to find the optimal search paths to search the sectors and its

tracks.

The search paths γ(ε)(t), ε= 1,2 are optimal search paths if the sequences a = {ai; i ≥ 0}
and b = {bi; i ≥ 0} on x2−axis are optimal. Therefore, we can assumed the certain conditions

(necessary) on underlying distribution under which, there exists a search path γ(ε)∗(t),

ε= 1,2.

As it can be seen that the search path depends on two unknown factors. Those are the

stochastic parameter ξ distribution, and the search path γ(ε)(t), ε = 1,2 that depend on

a = {ai; i ≥ 0} and b = {bi; i ≥ 0} used by the searchers in the right and the left parts

respectively. Let us assume that the stochastic parameter ξ distribution is known. Nevertheless

we are still facing a difficult optimization problem. Because this problem has an infinite

number of variables; there are a = {ai; i ≥ 0} and b = {bi; i ≥ 0}.
The following recursions gives a necessary conditions for a strategy to be optimal with

respect to Circular Normal Distribution.

5.1. The Case of a Circular Normal Distribution

If we assume that the stochastic parameter ξ has a bivariate normal distribution with

parameters σ1 and σ2 at time 0. And, (X1, X2) give the target’s actual position at time t.

Then X1 is normally distributed with mean 0 and standard deviation σ1. In addition, X1 is

independent of X2, which is normally distributed with mean 0 and standard deviation σ2. Let

f (x1, x2) =
1

2πσ1σ2

exp

�

−
1

2

�

x2
1

σ2
1

+
x2

2

σ2
2

��

, for (X1, X2) ∈ E, (11)

be the probability density function of the bivariate normal distribution. Thus, the distribu-

tion of error in the navigation system yields f as given in (12) for the density of the target

distribution. If σ1 = σ2 = σ then (11) becomes,

f (x1, x2) =
1

2πσ2
exp[−(x2

1 + x2
2)/2σ

2], for (X1, X2) ∈ E, (12)
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and the target distribution is called Circular Normal.

Then the structure of the search path becomes easy and even simple as we shall see below.

Let ξ be the target’s position at time 0. It is assumed that ξ has a Circular Normal distribu-

tion with parameter σ > 0 so, the density of the target distribution is given by (10). Assume

that T = [0,∞) and the target’s velocity is assumed to be constant with its speed proportional

to its distance from the origin to its position at time 0. Let q be the proportionality constant

for the target speed. Then, assume that the detection function Λ is given by,

Λ









x1, x2;









t
∫

0

ψ(ηs(x1, x2), s)ds

















= 1− exp









−

t
∫

0

ψ(ηs(x1, x2), s)ds









= 1− e−λ

for λ ≥ 0, [Stone 12].

Definition 4. If a = {ai; i ≥ 0 and i is an integer number} and

b = {bi; i ≥ 0 and i is an integer number} are search paths such that the derivative of E(τ(γ))

with respect to a and b exists and all partial derivatives of E(τ(γ)) with respect to the a′is and

b′is vanish, then a and b are said to be critical search paths (C.S.P).

Remark 2. We infer that if E(τ(γ)) is differentiable then the set of critical search paths will

contain all of the relative minimal and relative maximal search paths. Of course this set may

also contain search paths at which E(τ(γ)) does not have relative minimal or maximal search

paths. In addition the function E(τ(γ)) may have relative extremum at a search path at which

the derivative of E(τ(γ)) with respect to a and b do not exist or E(τ(γ)) may have a relative

extremum at a search path which is not an interior point.

If a = {ai; i ≥ 0} and b = {bi; i ≥ 0} are C.S.P, then
∂ E(τ(γ))

∂ ai
and

∂ E(τ(γ))

∂ bi
are exist for all

pertinent values of i, and then

∂ E(τ(γ))

∂ ai

= 0,
∂ E(τ(γ))

∂ bi

= 0, i ≥ 0. (13)

Theorem 3. If the stochastic parameter ξ has a Circular Normal distribution with joint density

function f (x1, x2) as in (12), and if the condition (5) holds then a′ιs and b′ιs of a C.S.P.

a = {aι; ι ≥ 0} and b = {bι; ι ≥ 0} are given by the following relations (with a0 = b0 = 0):

aι exp

�

−
a2
ι

2σ2

�

= σ2
∞
∑

i=1

















�

2+ iπ

2

�





n
∑

k=1

θk
∫

θk−1

bi+ι−1
∫

bi−1

exp
�

− r2

2σ2

�

d
�

− r2

2σ2

�

dθ









i+ι−1
∑

j=1

�

2b j +
�

i − j + ι
�

n
∑

k=1

b jθk

�




�

n
∑

k=1

�

θk − θk−1

�

�

















,

(14)
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and

bι exp

�

−
b2
ι

2σ2

�

= σ2
∞
∑

i=1

















�

2+ iπ

2

�





n
∑

k=1

θk
∫

θk−1

ai+ι−1
∫

ai−1

exp
�

− r2

2σ2

�

d
�

− r2

2σ2

�

dθ









i+ι−1
∑

j=1

�

2a j +
�

i − j + ι
�

n
∑

k=1

a jθk

�




�

n
∑

k=1

�

θk − θk−1

�

�

















.

(15)

The proof of Theorem 3 is in the Appendix.

The searchers search inside the tracks with width aι − aι−1 and bι − bι−1 in the right and

the left parts of x2-axis, respectively. By choosing many values of aι, ι = 1,2,3, . . ., we can

find bι, ι = 1,2,3, . . ., where the above theorem is true for all values of aι, ι = 2,3, . . ., and

vice versa. Therefore, we need to satisfy the conditions aι ≥ aι−1 and bι ≥ bι−1 along the

searching process and this is called the optimal case otherwise we stop the process and reject

the values of aι or bι, ι = 1,2,3, . . ..

6. Conclusion and Future Work

A coordinated search technique for a moving target has been presented. The condition

which make the expected value of the first meeting time be finite has been given. The neces-

sary conditions have been given to make the search plan be optimal.

The proposed model will be extendible to the multiple searchers case by considering the

combinations of movement of multiple targets in the plane.
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Appendix

Proof. [Theorem 1] If the target moves inside the track of g1, then t1 = 2a1+
n
∑

k=1

a1θk.

If the target moves inside in any track of gi , i = 1,2, then

t1 = 2a1+ 2a2+ 2

n
∑

k=1

a1θk +

n
∑

k=1

a2θk.

If the target moves inside in any track of gi , i = 1,2,3, then

t1 = 2a1+ 2a2+ 2a3+ 3

n
∑

k=1

a1θk + 2

n
∑

k=1

a2θk +

n
∑

k=1

a3θk,

and so on.

If the target moves inside the track of h1, then t2 = 2b1+
n
∑

k=1

b1θk.

If the target moves inside in any track of hi , i = 1,2, then

t2 = 2b1+ 2b2+ 2

n
∑

k=1

b1θk +

n
∑

k=1

b2θk.
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If the target moves inside in any track of hi , i = 1,2,3, then

t1 = 2b1+ 2b2+ 2b3+ 3

n
∑

k=1

b1θk + 2

n
∑

k=1

b2θk +

n
∑

k=1

b3θk,

and so on.

Then,

E(τ(γ)) =

 

n
∑

k=1

a1θk + 2a1

!









θ1
∫

0

b1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

b1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









+

 

n
∑

k=1

a1θk + 2a1+

n
∑

k=1

a1θk +

n
∑

k=1

a2θk + 2a2

!

×









θ1
∫

0

b1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

b1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θ1
∫

0

b2
∫

b1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

b2
∫

b1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









+

 

n
∑

k=1

a1θk + 2a1+

n
∑

k=1

a1θk +

n
∑

k=1

a2θk + 2a2+

n
∑

k=1

a1θk +

n
∑

k=1

a2θk +

n
∑

k=1

a3θk + 2a3

!

×









θ1
∫

0

b1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

b1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ
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+

θ1
∫

0

b2
∫

b1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

b2
∫

b1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θ1
∫

0

b3
∫

b2

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

b3
∫

b2

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









+

 

n
∑

k=1

b1θk + 2b1

!









θ1
∫

0

a1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

a1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









+ . . .

+

 

n
∑

k=1

b1θk + 2b1+

n
∑

k=1

b1θk +

n
∑

k=1

b2θk + 2b2

!

×









θ1
∫

0

a1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

a1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θ1
∫

0

a2
∫

a1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

a2
∫

a1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ








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+

 

n
∑

k=1

b1θk + 2b1+

n
∑

k=1

b1θk +

n
∑

k=1

b2θk + 2b2+

n
∑

k=1

b1θk +

n
∑

k=1

b2θk +

n
∑

k=1

b3θk + 2b3

!

×









θ1
∫

0

a1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

a1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θ1
∫

0

a2
∫

a1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

a2
∫

a1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θ1
∫

0

a3
∫

a2

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ + . . .

+

θn
∫

θn−1

a3
∫

a2

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









+ . . .

and so on, then

E(τ(γ)) =



2a1+

n
∑

k=1

a1θk













n
∑

k=1

θk
∫

θk−1

b1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









+



2a1+ 2a2+ 2

n
∑

k=1

a1θk +

n
∑

k=1

a2θk





×









n
∑

k=1

θk
∫

θk−1

b1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

n
∑

k=1

θk
∫

θk−1

b2
∫

b1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ








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+



2a1+ 2a2+ 2a3+ 3

n
∑

k=1

a1θk + 2

n
∑

k=1

a2θk +

n
∑

k=1

a3θk





×









n
∑

k=1

θk
∫

θk−1

b1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

n
∑

k=1

θk
∫

θk−1

b2
∫

b1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

n
∑

k=1

θk
∫

θk−1

b3
∫

b2

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









+ . . .

+



2b1+

n
∑

k=1

b1θk













n
∑

k=1

θk
∫

θk−1

a1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









+



2b1+ 2b2+ 2

n
∑

k=1

b1θk +

n
∑

k=1

b2θk





×









n
∑

k=1

θk
∫

θk−1

a1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

n
∑

k=1

θk
∫

θk−1

a2
∫

a1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









+



2b1+ 2b2+ 2b3+ 3

n
∑

k=1

b1θk + 2

n
∑

k=1

b2θk +

n
∑

k=1

b3θk





×









n
∑

k=1

θk
∫

θk−1

a1
∫

0

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

n
∑

k=1

θk
∫

θk−1

a2
∫

a1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ
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+

n
∑

k=1

θk
∫

θk−1

a3
∫

a2

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









+ . . .

=

∞
∑

i=1











i
∑

j=1











n
∑

k=1











θk
∫

θk−1

b j
∫

b j−1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θk
∫

θk−1

a j
∫

a j−1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









×



2(a j + b j) +

j
∑

α=1

 

�

aα + bα
�

n
∑

k=1

θk

!







)

,

therefore, the expected value of the first meeting time between one of the searchers and the

target is finite if:

∞
∑

i=1











i
∑

j=1











n
∑

k=1











θk
∫

θk−1

b j
∫

b j−1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θk
∫

θk−1

a j
∫

a j−1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ









×



2(a j + b j) +

j
∑

α=1

 

�

aα+ bα
�

n
∑

k=1

θk

!







)

,

is finite.

Proof. [Theorem 3] From (5) we obtain,

E(τ(γ)) =

∞
∑

i=1











i
∑

j=1











n
∑

k=1











θk
∫

θk−1

b j
∫

b j−1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ

+

θk
∫

θk−1

a j
∫

a j−1

g(r,θ )z









r,θ ;









t
∫

0

ψ(ηs(r,θ ), s)ds

















rdrdθ








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×



2(a j + b j) +

j
∑

α=1

 

�

aα + bα
�

n
∑

k=1

θk

!







)

Since, Λ

�

x1, x2;

�

t
∫

0

ψ(ηs(x1, x2), s)ds

��

= 1− e−λ, then

E(τ(γ)) =

∞
∑

i=1











i
∑

j=1











n
∑

k=1











θk
∫

θk−1

b j
∫

b j−1

1

2πσ2
exp

�

−
r2

2σ2

�

�

1− e−λ
�

rdrdθ

+

θk
∫

θk−1

a j
∫

a j−1

1

2πσ2
exp

�

−
r2

2σ2

�

�

1− e−λ
�

rdrdθ









×



2(a j + b j) +

j
∑

α=1

 

�

aα+ bα
�

n
∑

k=1

θk

!







)

=

¨

e−λ − 1

2π

«









2a1+

n
∑

k=1

a1θk













n
∑

k=1

b1
∫

0

θk
∫

θk−1

exp

�

−
r2

2σ2

�

d

�

−
r2

2σ2

�

dθ









+



2a1+ 2a2+ 2

n
∑

k=1

a1θk +

n
∑

k=1

a2θk













n
∑

k=1

θk
∫

θk−1

b1
∫

0

exp

�

−
r2

2σ2

�

d

�

−
r2

2σ2

�

dθ

+

n
∑

k=1

θk
∫

θk−1

b2
∫

b1

exp

�

−
r2

2σ2

�

d

�

−
r2

2σ2

�

dθ









+



2a1+ 2a2+ 2a3+ 3

n
∑

k=1

a1θk + 2

n
∑

k=1

a2θk +

n
∑

k=1

a3θk





×









n
∑

k=1

θk
∫

θk−1

b1
∫

0

exp

�

−
r2

2σ2

�

d

�

−
r2

2σ2

�

dθ

+

n
∑

k=1

θk
∫

θk−1

b2
∫

b1

exp

�

−
r2

2σ2

�

d

�

−
r2

2σ2

�

dθ

+

n
∑

k=1

θk
∫

θk−1

b3
∫

b2

exp

�

−
r2

2σ2

�

d

�

−
r2

2σ2

�

dθ








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+ . . .

+



2b1+

n
∑

k=1

b1θk













n
∑

k=1

θk
∫

θk−1

a1
∫

0

exp

�

−
r2

2σ2

�

d

�

−
r2

2σ2

�

dθ









+



2b1+ 2b2+ 2

n
∑

k=1

b1θk +

n
∑

k=1

b2θk













n
∑

k=1

θk
∫

θk−1

a1
∫

0

exp

�

−
r2

2σ2

�

d

�

−
r2

2σ2

�

dθ

+

n
∑

k=1

θk
∫

θk−1

a2
∫

a1

exp

�

−
r2

2σ2

�

d

�

−
r2

2σ2

�

dθ









+



2b1+ 2b2+ 2b3+ 3

n
∑

k=1

b1θk + 2

n
∑

k=1

b2θk +

n
∑

k=1

b3θk





×


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By differentiation with respect to a1, then we get,
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then,
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By differentiation with respect to a2, then we get,
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thus,
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Similarly,
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and etc... By induction from the above expressions we obtain,
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Using the same method, we can prove (15).


