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Abstract. The notion of ordered filters is introduced in Heyting almost distributive lattices and the
properties of these filters are then studied. A set of characterization theorems of ordered filters are
proved. Some necessary conditions of ordered filters are derived. Some congruences are introduced in
terms of ordered filters and a relation is established among these congruences.
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1. Introduction

The concept of an Almost Distributive Lattice (ADL) was introduced by Swamy and Rao
[5] as a common abstraction to most of the existing ring theoretic and lattice theoretic gener-
alizations of a Boolean algebra. In [4], Rao, Berhanu and Ratna Mani introduced the concept
of Heyting almost distributive lattices as a generalization of Heyting algebra in the class of
ADLs. Later they introduced the class of implicative filters [3] and studied their properties. In
[2], Chan and Shum introduced the notions of ordered filters in implicative semigroups and
studied the homomorphic properties of these filters.

In this paper, the notion of ordered filters is introduced in Heyting almost distributive
lattices (HADLs). Some necessary and sufficient conditions are derived for a non-empty set of
a HADL to become an ordered filter. Some properties of these ordered filters are then studied
under homomorphisms.

The concept of F -identity elements is introduced and their properties are studied. Three
congruences are introduced respectively in terms of ordered filters, F -identity elements and
ideals of F -identity elements. A relation is then established among these congruences.

∗Corresponding author.

Email addresses: mssraomaths35@rediffmail.com (M. Rao), gcraomaths@yahoo.co.in (G. Rao)

http://www.ejmathsci.com 140 c© 2013 EJMATHSCI All rights reserved.



M. Rao, G. Rao / Eur. J. Math. Sci., 2 (2013), 140-151 141

2. Preliminaries

In this section, certain definitions and important results are collected and presented from
[1, 4, 5], those will be required in the text of the paper.

Definition 1 ([5]). An Almost Distributive Lattice(ADL) with zero is an algebra (L,∨,∧, 0) of
type (2,2,0) satisfying the following properties:

1) (x ∨ y)∧ z = (x ∧ z)∨ (y ∧ z)

2) x ∧ (y ∨ z) = (x ∧ y)∨ (x ∧ z)

3) (x ∨ y)∧ y = y

4) (x ∨ y)∧ x = x

5) x ∨ (x ∧ y) = x

6) 0∧ x = 0 for any x , y, z ∈ L

If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a ≤ b if and only if a = a ∧ b (or
equivalently, a ∨ b = b ), then ≤ is a partial ordering on L.

Definition 2 ([5]). Let L be a non-empty set. Fix x0 ∈ L. For any x , y ∈ L, define x ∧ y = y,
x ∨ y = x if x 6= x0, x0 ∧ y = x0 and x0 ∨ y = y. Then (L,∨,∧, x0) is an ADL and it is called
a Discrete ADL with x0 as its 0. Alternatively, Discrete ADL is defined as an ADL in which every
non-zero element is maximal in the poset (L,≤).

Theorem 1. [5] Let L be an ADL. Then for any a, b, c ∈ L, we have the following:

1) a ∨ b = a⇔ a ∧ b = b

2) a ∨ b = b⇔ a ∧ b = a

3) a ∧ b = b ∧ a whenever a ≤ b

4) ∧ is associative in L

5) a ∧ b ∧ c = b ∧ a ∧ c

6) a ∨ (b ∧ c) = (a ∨ b)∧ (a ∨ c)

7) a ∧ a = a and a ∨ a = a

8) 0∨ a = a and a ∧ 0= 0

9) a ∨ b)∧ c = (b ∨ a)∧ c

Definition 3 ([3]). A non-empty subset F of a ADL L is called a filter if it satisfies the following
conditions:
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(F1) x , y ∈ F implies x ∧ y ∈ F

(F2) x ∈ L, a ∈ F imply x ∨ a ∈ F

Theorem 2 ([5]). Let F be a filter in L and x , y ∈ L. Then x ∨ y ∈ F ⇔ y ∨ x ∈ F.

Theorem 3 ([5]). Let m be a maximal element of the partially ordered set (L,≤). Then the
following hold.

1) m∨ x = m for all x ∈ L

2) m∧ x = x for all x ∈ L

3) (m] = L

Definition 4 ([4]). Let (L,∨,∧, 0, m) be an ADL with 0 and a maximal element m. Suppose→
is a binary operation on L satisfying the following conditions:

1) a→ a = m

2) (a→ b)∧ b = b

3) a ∧ (a→ b) = a ∧ b ∧m

4) a→ (b ∧ c) = (a→ b)∧ (a→ c)

5) (a ∨ b)→ c = (a→ c)∧ (b→ c) for all a, b, c ∈ L.

Then (L,∨,∧,→, 0, m) is called a Heyting ADL or simply HADL. Throughout this article L stands
for a Heyting ADL (HADL), unless otherwise mentioned.

Lemma 1 ([5]). Let m be a maximal element in L. Then for any x , y ∈ L, the following
conditions hold.

1) x ≤ y ⇒ x → y = m

2) m→ x = x ∧m

3) x → m= m

Lemma 2 ([4]). Let m be a maximal element in L. Then for any a, x , y ∈ L with x ≤ y, the
following conditions hold.

1) a→ x ≤ a→ y

2) y → a ≤ x → a

Theorem 4 ([4]). Let (L,∨,∧,→, 0, m) be a HADL. Then for x , y ∈ L, the following conditions
are equivalent:

1) x → y = m
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2) x ∧m≤ y ∧m

3) x → (y ∧m) = m

4) y ∧ x = x

Lemma 3 ([4]). Let m be a maximal element in L. Then for any a, b, c ∈ L, the following
conditions hold.

1) b ∧m≤ (a→ b)∧m

2) a→ (a ∧ c) = a→ c

3) a ∧ b ∧m= a ∧ c ∧m⇔ (a→ b)∧m= (a→ c)∧m

4) a ∧m≤ b ∧m⇔ (a→ b)∧m= m

5) a ∧ c ∧m≤ b ∧m⇔ c ∧m≤ (a→ b)∧m

6) a ∧m≤ ((a→ b)→ b)∧m

7) a ∧m≤ (b→ c)∧m⇔ b ∧m≤ (a→ c)∧m

8) (a→ (b→ c))∧m= ((a ∧ b)→ c)∧m

9) ((a ∧ b)→ c)∧m= ((b ∧ a)→ c)∧m

10) (a→ (b→ c))∧m= (b→ (a→ c))∧m

Definition 5 ([4]). Let (L,∨,∧,→, 0, m) and (L′,∨,∧,→, 0′, m′) be two HADLs. Then the map-
ping f : L −→ L′ is called a homomorphism of L into L′ if for any x , y ∈ L, the following
conditions hold

1) f (x ∧ y) = f (x)∧ f (y)

2) f (x ∨ y) = f (x)∨ f (y)

3) f (x → y) = f (x)→ f (y)

4) f (0) = 0′

Theorem 5 ([5]). An equivalence relation θ on a HADL L is a congruence if and only if
(a, b) ∈ θ implies (a ∧ c, b ∧ c), (a ∨ c, b ∨ c) ∈ θ for all a, b, c ∈ L.
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3. Ordered Filters of HADLs

In this section, the concept of ordered filters is introduced in HADLs and these filters are
then characterized. A necessary and sufficient condition is derived for any non-empty set to
become an ordered filter. The homomorphic images of ordered filters are studied.

Definition 6. Let L be a HADL with a maximal element m. A non-empty subset F of L is called
an ordered filter if it satisfies the following conditions for all x , y ∈ L:

(O1) x , y ∈ F implies x ∧ y ∈ F

(O2) x ∈ F and x ∧m≤ y ∧m imply y ∈ F

Example 1. Let L be a discrete ADL with 0 and with at least two elements. Fix m(6= 0) ∈ L and
define for any x , y ∈ L.

x → y =

(

0 if x 6= 0, y = 0

m otherwise

Then clearly (L,∨,∧,→, 0, m) is an HADL and {m} is an ordered filter in L.

Let F be an ordered filter of an HADL L. Then choose x ∈ F . Since x ∧m ≤ m = m∧m,
by the condition O2, we get that m ∈ F . The following Lemma can help us to understand the
relation between a filter and an ordered filter of a HADL.

Lemma 4. Let m be a maximal element of a HADL L. Then every filter of L is an ordered filter.

Proof. Let F be a filter of L. Clearly m ∈ F . Let x , y ∈ F . Since F is a filter in L, we
get that x ∧ y ∈ F . Assume that x ∈ F and x ∧ m ≤ y ∧ m. Then clearly x ∧ m ∈ F . Now
y ∧ x ∧m= x ∧ y ∧m= x ∧ y ∧m∧m= x ∧m∧ y ∧m= x ∧m ∈ F . Since F is a filter in L, it
yields that y = y ∨ (y ∧ x ∧m) ∈ F . Therefore F is an ordered filter of L.

The set M0 of all maximal elements of L is a filter and hence an ordered filter in L. If
L has more than one maximal elements, then for any maximal element m, the set {m} is an
ordered filter but not a filter in L. In the following, a set of equivalent conditions are derived
for every non-empty subset of a HADL to become an ordered filter.

Theorem 6. Let m be a maximal element of L and F a non-empty subset of L. Then F is an
ordered filter of L if and only if it satisfies the following properties.

(O3) m ∈ F

(O4) x ∈ F, x → y ∈ F imply y ∈ F for all x , y ∈ L

Proof. Assume that F is an ordered filter of L. Then clearly m ∈ F . Let x ∈ F and
x → y ∈ F . Then x∧ y∧m= x∧(x → y) ∈ F . We have always x∧ y∧m∧m= x∧ y∧m≤ y∧m.
Since x ∧ y ∧ m ∈ F and F is an ordered filter, we get that y ∈ F . Conversely, assume
that F satisfies the conditions O3 and O4. Now, let x , y ∈ F . Then we have the following
consequence:

y ∧m ≤ (x → y)∧m
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= (x → y)∧m∧m

= m∧ (x → y)∧m

= (x → x)∧ (x → y)∧m

= (x → (x ∧ y))∧m

Thus by Theorem 4, we get that y → [x → (x ∧ y)] = m ∈ F . By the repeated application
of the property O4, we get that x ∧ y ∈ F . Again, let x ∈ L and x ∧ m ≤ y ∧ m. Then
x → y = m ∈ F . By property O4, we get y ∈ F . Hence F is an ordered filter of L.

Theorem 7. Let m be a maximal element of L and F a non-empty subset of L. Then F is an
ordered filter if and only if it satisfies the following property.

(O5) x ∧m≤ (y → z)∧m implies z ∈ F for all x , y ∈ F and z ∈ L

Proof. Assume that F is an ordered filter of L. Let m be a maximal element in L. Let
x ∧m≤ (y → z)∧m for all x , y ∈ F and z ∈ L. Then we get that x → (y → z) = m ∈ F . Since
x , y ∈ F , it follows from O4 that z ∈ F .

Conversely, assume that F satisfies the condition O5. Now for any x ∈ F , we have
x ∧m ≤ m = m ∧m = (x → m) ∧m. Thus from the condition O5, we get m ∈ F . Let x ∈ F
and x → y ∈ F . Since x ∧m≤ ((x → y)→ y)∧m, by the assumed condition O5 it yields that
y ∈ F . Thus F is an ordered filter of L.

The following Corollary is a direct consequence of above Theorem.

Corollary 1. Let m be a maximal element of an HADL L and F a non-empty subset of L. Then F
is an ordered filter if and only if it satisfies the following:

(O6) x → (y → z) = m implies z ∈ F for all x , y ∈ F and z ∈ L

Lemma 5. Let F be an ordered filter of L. Then for all x , y, z ∈ L, the following condition holds.

(x → y)→ z ∈ F implies x → (y → z) ∈ F

Proof. Let x , y, z ∈ L and m a maximal element of L. Suppose (x → y)→ z ∈ F . Then we
have the following consequence:

y ∧m≤ (x → y)∧m ⇒ ((x → y)∧m)→ z ≤ (y ∧m)→ z

⇒ (((x → y)∧m)→ z)∧m≤ ((y ∧m)→ z)∧m

⇒ ((x → y)→ (m→ z))∧m≤ (y → (m→ z))∧m

⇒ ((x → y)→ (z ∧m))∧m≤ (y → (z ∧m))∧m

⇒ ((x → y)→ z)∧m)∧m≤ ((y → z)∧m)∧m

⇒ ((x → y)→ z)∧m≤ (y → z)∧m

⇒ ((x → y)→ z)→ (y → z) = m ∈ F

⇒ y → z ∈ F since (x → y)→ z ∈ F

Since (y → z) ∧m ≤ (x → (y → z)) ∧m, we get (y → z)→ (x → (y → z)) = m ∈ F . Since
y → z ∈ F , we get x → (y → z) ∈ F . This completes the proof.
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Theorem 8. Let F be an ordered filter of a HADL L with a maximal element m. Then for all
x , y ∈ L, it satisfies the following condition.

(O7) (∀ x , y ∈ L)(∀ a ∈ F), (x → a)→ y ∈ F implies x → y ∈ F

Proof. Suppose F is an ordered filter of L. Let x , y ∈ L and a ∈ F be such that
(x → a)→ y ∈ F . Now we have the following

a ∧m≤ (x → a)∧m ⇒ a→ (x → a) = m ∈ F

⇒ x → a ∈ F since a ∈ F)

⇒ y ∈ F since (x → a)→ y ∈ F)

Since y ∧m≤ (x → y)∧m, we get y → (x → y) = m ∈ F . Since y ∈ F , we get x → y ∈ F .

In the following Theorem, the result of Chan and Shum [3] on implicative homomor-
phisms is generalized to the case of HADLs.

Theorem 9. Let (L,∨,∧,→, 0, m) and (L′,∨,∧,→, 0′, m′) be two HADLs. Let α be a mapping
from L into L′ such that α(x → y) = α(x)→ α(y) for all x , y ∈ L. Let
F = {x ∈ L | α(x)∧m′ = m′}. Then the following properties hold.

1) α(m) = m′

2) x ≤ y implies α(x)∧m′ ≤ α(y)∧m′

3) If α(x ∧ y) = α(x)∧α(y) for all x , y ∈ L, then F is an ordered filter of L

4) If F = {m}, then the following implication holds:

α(x) = α(y) implies x → y = y → x for all x , y ∈ L

Proof. 1). By Definition 4, we get α(m) = α(m→ m) = α(m)→ α(m) = m′.

2). Suppose that x ≤ y . Then we get α(x)→ α(y) = α(x → y) = α(m) = m′. From the
Theorem 4, it can be concluded that α(x)∧m′ ≤ α(y)∧m′.

3). Clearly α(m)∧m′ = m′ ∧m′ = m′. Hence m ∈ F . Let x , y ∈ F . Then
α(x)∧m′ = α(y)∧m′ = m′ and hence

α(x ∧ y)∧m′ = α(x)∧α(y)∧m′ ∧m′ = α(x)∧m′ ∧α(y)∧m′ = m′ ∧m′ = m′.

Therefore x ∧ y ∈ F . Again, let x ∈ F and x ∧ m ≤ y ∧ m. Then by condition 2), we get
α(x)∧m′ = m′ and α(x ∧m)∧m′ ≤ α(y ∧m)∧m′. Thus

m′ = α(x)∧m′ = α(x)∧α(m)∧m′ = α(x∧m)∧m′ ≤ α(y∧m)∧m′ = α(y)∧m′∧m′ = α(y)∧m′.

Hence α(y)∧m′ = m′ and thus y ∈ F . Therefore F is an ordered filter of L.
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4). Assume that F = {m}. Lat x , y ∈ L be such that α(x) = α(y). Then
α(x → y) ∧ m′ = (α(x) → α(y)) ∧ m′ = (α(x) → α(x)) ∧ m′ = m′ ∧ m′ = m′. This means
that x → y ∈ F = {m}. Therefore x → y = m. By using the similar argument, we can get
y → x = m. Therefore x → y = y → x .

Theorem 10. Let (L,∨,∧,→, 0, m) and (L′,∨,∧,→, 0′, m′) be two HADLs and α : L −→ L′ an
onto mapping such that α(x → y) = α(x)→ α(y) for all x , y ∈ L. Then the following properties
hold.

1) If F is an ordered filter of L, then α(F) is an ordered filter of L′

2) If F ′ is an ordered filter of L′, then α−1(F ′) is an ordered filter of L

Proof. 1). Let F be an ordered filter of L. Since m ∈ F , we get m′ = α(m) ∈ α(F). Let
α(x) ∈ α(F) and α(x)→ y ′ ∈ α(F) for some y ′ ∈ L′. Since α is onto, there exists y ∈ L such
that α(y) = y ′. Now α(x → y) = α(x) → α(y) = α(x) → y ′ ∈ α(F). Hence x → y ∈ F .
Since F is an ordered filter of L, we get that y ∈ F . Therefore y ′ = α(y) ∈ α(F). Thus we can
conclude that α(F) is an ordered filter of L′.

2). Let F ′ be an ordered filter of L′. It is clear that m = α−1(m′) ∈ α−1(F ′). Let x ∈
α−1(F ′) and x → y ∈ α−1(F ′). Then α(x) ∈ F ′ and α(x)→ α(y) = α(x → y) ∈ F ′. Since F ′

is an ordered filter, it can be concluded that α(y) ∈ F ′. Hence y ∈ α−1(F ′). Therefore α−1(F ′)
is an ordered filter of L.

4. Congruences and Ordered Filters

In this section, three different congruence relations are introduced in terms of ordered
filters of a HADL and then their properties are studied. Finally, a relation is established among
these congruences.

Definition 7. Let m be a maximal element of L. For any ordered filter F of L and a ∈ L, the set
F a is defined as follows:

F a = {x ∈ L | (a→ x)∧m ∈ F}

It is obvious that F0 = L and F m = F .

Proposition 1. Let m be a maximal element of L. If F is an ordered filter of L and a ∈ L, then
F a is an ordered filter of L containing F.

Proof. Clearly m ∈ F a. Let x , y ∈ F a. Then (a→ x)∧m ∈ F and (a→ y)∧m ∈ F . Then
(a → (x ∧ y)) ∧ m = (a → x) ∧ (a → y) ∧ m = (a → x) ∧ m ∧ (y → a) ∧ m ∈ F . Hence
x ∧ y ∈ F a. Let x ∈ F a and x ∧m≤ y ∧m. Then (a→ x)∧m ∈ F and

(a→ x)∧m= (a→ x)∧(a→ m) = a→ (x∧m)≤ a→ (y∧m) = (a→ y)∧(a→ m) = (a→ y)∧m.

Since F is an ordered filter and (a → x) ∧m ∈ F , we get (a → y) ∧m ∈ F . Hence y ∈ F a.
Therefore F a is an ordered filter of L. Let x ∈ F . Since x ∧ m ≤ (a → x) ∧ m, we can get
(a→ x)∧m ∈ F . Hence x ∈ F a. Therefore F a is an ordered filter containing F .
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Lemma 6. Let F, G be two ordered filters of L. Then for any a, b ∈ L, we have the following
properties:

1) a ≤ b implies F b ⊆ F a

2) F ⊆ G implies F a ⊆ Ga

3) F a ∩ Ga = (F ∩ G)a

4) F a∨b = F a ∩ F b = F b∨a

5) F a∧b = F b∧a

Proof. 1). Let a ≤ b. If x ∈ F b, then (b→ x)∧m ∈ F . Since (b→ x)∧m ≤ (a→ x)∧m,
we get (a→ x)∧m ∈ F . Thus x ∈ F a. Hence F b ⊆ F a.

2). Suppose that F ⊆ G. Let x ∈ F a. Then we get (a → x) ∧m ∈ F ⊆ G. Hence x ∈ Ga.
Therefore F a ⊆ Ga.

3). It is trivial that (F ∩ G)a ⊆ F a ∩ Ga. Conversely, let x ∈ F a ∩ Ga. Then we get
a→ x ∈ F ∩ G. Therefore x ∈ (F ∩ G)a.

4). Clearly F a∨b ⊆ F a∩F b. Conversely, let x ∈ F a∩F b. Then (a→ x)∧m, (b→ x)∧m ∈ F .
Since F is an ordered filter, we get

((a ∨ b)→ x)∧m= (a→ x)∧ (b→ x)∧m= (a→ x)∧m∧ (b→ x)∧m ∈ F.

Hence x ∈ F a∨b. Therefore F a ∩ F b = F a∨b. The remaining part is trivial.

5). For any x ∈ L, from Lemma 3(9), we get that

x ∈ F a∧b⇔ ((a ∧ b)→ x)∧m ∈ F ⇔ (b ∧ a)→ x)∧m ∈ F ⇔ x ∈ F b∧a.

Therefore it yields that F a∧b = F b∧a.

For any ordered filter F of a HADL L, bF denotes the set of all ordered filters of the form
F x , x ∈ L. Then we have the following result.

Theorem 11. Let F be an ordered filter of a HADL L. Then the set bF = {F x | x ∈ L} forms a
distributive lattice.

Proof. For any F a, F b, it is clear from Lemma 6(4) that F a∨b is the infemum for F a and F b.
It is remaining to prove that F a∧b is the supremum of F a and F b. Clearly F a, F b ⊆ F a∧b. Let
F c be an upper bound for both F a and F b. Let x ∈ F a∧b. Then

(a→ (b→ x))∧m= ((a ∧ b)→ x)∧m ∈ F.

Hence b → x ∈ F a ⊆ F c . Then (b → (c → x)) ∧ m = (c → (b → x)) ∧ m ∈ F . Hence
c→ x ∈ F b ⊆ F c . Therefore (c→ x)∧m = ((c ∧ c)→ x)∧m = (c→ (c→ x))∧m ∈ F . Thus



M. Rao, G. Rao / Eur. J. Math. Sci., 2 (2013), 140-151 149

x ∈ F c . Hence F a∧b ⊆ F c . Now consider F a∧b = F a t F b. Then it can be easily verified that
(bF ,t,∩) is a distributive lattice.

In the following, we introduce a congruence relation on L in terms of ordered filters of the
form F x , x ∈ L. Throughout this section, a congruence on an a HADL means an equivalence
relation satisfying the property of Theorem 5.

Definition 8. Let F be an ordered filter of L. Define a relation θ as follows:

(a, b) ∈ θ if and only if F a = F b for all a, b ∈ L

Theorem 12. For any ordered filter F of a HADL L, the relation θ defined above is a congruence
on L.

Proof. Clearly θ is an equivalence relation on L. Let (a, b) ∈ θ . Then F a = F b. Let
x ∈ F a∧c . Then (a→ (c → x)) ∧m = ((a ∧ c)→ x) ∧m ∈ F . Hence c → x ∈ F a = F b. Thus
((b∧c)→ x)∧m= (b→ (c→ x))∧m ∈ F . Hence x ∈ F b∧c . Therefore F a∧c ⊆ F b∧c . Similarly,
we can get F a∧c ⊆ F b∧c . Therefore F a∧c = F b∧c . Thus (a ∧ c, b ∧ c) ∈ θ . It is also clear that
F a∨c = F a ∩ F c = F b ∩ F c = F b∨c . Hence (a ∨ c, b ∨ c) ∈ θ . Therefore θ is a congruence on L.

Definition 9. An element a ∈ L is called F-identity if F a = L.

Denote the set of all F -identity elements by DF . Then we have the following:

Lemma 7. Let F, G be two ordered filters of L and a ∈ L. Then we have the following:

1) F0 = L

2) DF is a lattice ideal of L

3) DF is a sublattice of L

4) If F ∩ DF 6= ;, then F = DF = L

Proof. 1). It is clear.

2). Clearly 0 ∈ DF . Let x , y ∈ DF . Then F x∨y = F x ∩ F y = L. Hence x ∨ y ∈ DF . Let
x ∈ DF , y ≤ x . Then L = F x ⊆ F y . Therefore y ∈ DF .

3). Let x , y ∈ DF . Since x ∧ y ≤ y , it can be concluded that L = F y ⊆ F x∧y .

4). Let x ∈ F ∩ DF . Then we get F = F x = L. Therefore F = DF = L.

The following Theorem is a routine verification.

Theorem 13. For any a, b ∈ L, define a relation ΨDF
as (a, b) ∈ΨDF

if and only if a∨d = b∨d
for some d ∈ DF . Then ΨDF

is a congruence relation on L.
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Definition 10. Let F be an ordered filter of a HADL L. For any a ∈ L, define
(a, DF ) = { x | x ∧ a ∈ DF}.

Lemma 8. Let F be an ordered filter of L. For any a, b ∈ L we have

1) (a, DF ) is a lattice ideal of L

2) a ≤ b implies (b, DF )⊆ (a, DF )

3) (a ∨ b, DF ) = (a, DF )∩ (b, DF )

Proof. 1). Clearly 0 ∈ (a, DF ). Let x , y ∈ (a, DF ). Then a∧ (x ∨ y) = (a∧ x)∨ (a∧ y) ∈ DF .
Hence x∨ y ∈ (a, DF ). Let x ∈ (a, DF ) and y ≤ x . Then y∧a ≤ x∧a ∈ DF . Hence y ∈ (a, DF ).
Therefore (a, DF ) is an ideal of L.

2). Suppose that a ≤ b. Let x ∈ (b, DF ). Then we get b∧x ∈ DF . Hence a∧x ≤ b∧x ∈ DF .
Thus it yields that a ∧ x ∈ DF . Therefore x ∈ (a, DF ).

3). Clearly (a ∨ b, DF ) ⊆ (a, DF ) ∩ (b, DF ). Conversely, let x ∈ (a, DF ) ∩ (b, DF ). Hence
(a ∨ b)∧ x = (a ∧ x)∨ (b ∧ x) ∈ DF . Therefore it concludes x ∈ (a ∨ b, D).

Theorem 14. For any a, b ∈ L, the relation Θ defined by (a, b) ∈Θ if and only if
(a, DF ) = (b, DF ) is a lattice congruence on L.

Proof. Clearly Θ is an equivalence relation. Suppose (a, DF ) = (b, DF ). Then for any c ∈ L,
we get

x ∈ (a∧c, DF )⇔ x∧a∧c ∈ DF ⇔ x∧c ∈ (a, DF ) = (b, DF )⇔ c∧c∧b ∈ DF ⇔ x ∈ (b∧c, DF ).

Hence (a∧ c, b∧ c) ∈Θ. Again (a∨ c, DF ) = (a, DF )∩ (c, DF ) = (b, DF )∩ (c, DF ) = (a∨ c, DF ).
Hence (a ∨ c, b ∨ c) ∈Θ.

Theorem 15. Let F be an ordered filter of L. Then we have ΨDF
⊆ θ ⊆Θ.

Proof. Let a, b ∈ΨDF
. Then we can write a ∨ d = b ∨ d for some d ∈ DF . Now

F a = F a ∩ L = F a ∩ F d = F a∨d = F b∨d = F b ∩ F d = F b ∩ L = F b. Therefore (a, b) ∈ θ . Assume
that (a, b) ∈ θ . Then we have F a = F b. Now

x ∈ (a, D)⇔ a ∧ x ∈ DF ⇔ F a∧x = L⇔ F a t F x

= L⇔ F b t F x = L⇔ F b∧x = L⇔ b ∧ x ∈ DF ⇔ x ∈ (b, D).

Thus it yields that (a, b) ∈Θ. Therefore we can conclude that ΨDF
⊆ θ ⊆Θ.
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