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1. Introduction

Time series models have wide spread applications in science, engineering and economics.

A mathematical model of a time series variable may be fitted to historical data from the

time series for the purpose of gaining a better understanding of the underlying process that

generates the data and for extrapolating future values. If the time series variable is random

then its probability distribution must be known or assumed. Even if the distribution is known

and the perfect model is selected, the data are almost always a limited sample. That is, the

population is truncated and distorted. Therefore, a sampling bias occurs. The absence of

any relevant information from a model will express itself in the patterns of the error term. If

complete avoidance of bias requires normally distributed data, then the absence of normality

is like missing information. The errors can become serially correlated [Griliches 3]. The

parameters of the model are biased and fitted values from the model are biased. That is, in

addition to random errors, the fitted values contain a component of error that is systematically
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biased. Likewise, future values extrapolated from the model are biased. The bias grows with

the forecast horizon. This diminishes the usefulness of the forecast when applied to long

range economic projections.

Antithetic time series modeling is a method for creating new fitted values that are inversely

correlated with the original fitted values (Ridley [4], Ridley and Ngnepieba [5]). Reversal of

correlation is accomplished by raising the fitted values to an infinitesimally small negative

exponent. The original and antithetic fitted values are then combined so as to eliminate the

biased component of error, leaving only purely random error. In theory, the mean square error

(MSE) of the unbiased combined forecast is constant throughout the forecast horizon. The

purpose of this paper is to investigate the sensitivity of the MSE to the combining parameters.

The remainder of the paper is organized as follows. The antithetic time series model is defined

in section 2. The population statistics that describe the original and antithetic time series are

defined in terms of combining parameters in Section 3. The corresponding sample statistics

are given in section 4. A system of equations that define the optimal combining parameters

is derived in section 5. An empirical example that illustrates how the combining parameters

affect MSE is given in section 6. Some suggestions for future research are given in section 7.

2. The Antithetic Time Series Model

Consider the lognormal time series X t ,−∞ ≤ t ≤ ∞, ln X t ∼ N
�
µ,σ2
�

, from which

a sample x t , t = 1,2,3, . . . , n, is taken. The reversal of correlation between X t and X
p
t as

p→ 0−,σ→ 0 was proved by the Ridley [4] antithetic time series theorem for the lognormal

distribution. Now, suppose that x t = f
�

x t−1

�
+ εt , t = 2,3, . . . , n, is a time series model

which is biased due to serial correlation or due to data sampling bias, such that the covariance

Cov
�
εt , x t−1

� 6= 0. Let the fitted values be bx t . Denoting the standard deviation in x t by sx ,

and the sample correlation coefficient by r, the combined antithetic fitted model is given (see

appendix A) by

bxc,t =ωbx t + (1−ω)
n

x + rbxbx p

�
sbx/sbx p

��
bx p

t − bx p
�o

, p→ 0−.

When applying this model to actual data, typical of what can be expected, the model is re-

stated as

bxc,t =ωbx t + (1−ω)
n

x +
�

1− k
p

n+ 1− t
�

rbzbzp

�
sbz/sbzp

��
bzp

t − bzp
�o

, (1)

where p =−0.001 and zt = x t+λ, where λ is used to facilitate the power transformation, and

k is an empirical factor to correct for heteroscedasticity in the data. The values of ω,λ and k

are chosen to minimize the fitted MSE. Whereas bx t is biased, bxc,t is unbiased [see 4]. In Ridley

[4], ω,λ were found by grid search†. Also, only stationary time series were considered so the

parameter k was not included. In this paper we derive the system of analytical equations that

specify the combining parameters exactly. This allows ω,λ and k to be determined iteratively,

and therefore more rapidly than the previous grid search. With the help of graphs obtained

†Using FOURCAST application, http://www.fourcast.net
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from these equations we are better able to show and interpret the effects of ω,λ and k on the

MSE.

3. Population Statistics

Given X t lognormally distributed such that lnX t ∼ N
�
µ,σ2
�

then, E
�

X t

�
= exp
�
µ+σ2/2
�

and E
�

X
p
t

�
= exp
�

pµ+ p2σ2/2
�

. Next, consider Zt = X t +λ. Then, ln Zt ∼ N
�
µ+λ,σ2
�

,

and E
�

Z
p
t

�
= E
��

X t +λ
�p�
= exp
�

p
�
µ+λ
�
+ p2σ2/2
�

. The correlation between Zt and

Z
p
t , ρzzp is given by

ρzzp =
E

h
Z

p+1
t

i
−E
�

Z
p
t

�
E
�

Zt

�

σzσzp

, (2)

where σz and σzp are the standard deviations of Zt and Z
p
t , respectively. We then have

E

h
Z

p+1
t

i
−E
�

Z
p
t

�
E
�

Zt

�
=exp
¦�

p+ 1
��
µ+λ
�
+
�

p+ 1
�2
σ2/2
©

− exp
¦

p
�
µ+λ
�
+ p2σ2/2
©

exp
�
µ+λ+σ2/2
�

= exp
¦�

p+ 1
��
µ+λ
�
+
�

p+ 1
�2
σ2/2
©

− exp
¦�

p+ 1
��
µ+λ
�
+
�

p2+ 1
�
σ2/2
©

= exp
¦�

p+ 1
��
µ+λ
�
+
�

p2+ 2p+ 1
�
σ2/2
©

− exp
¦�

p+ 1
��
µ+λ
�
+
�

p2+ 1
�
σ2/2
©

= exp
¦�

p+ 1
��
µ+λ
�
+
�

p2+ 1
�
σ2/2+ pσ2
©

− exp
¦�

p+ 1
��
µ+λ
�
+
�

p2+ 1
�
σ2/2
©

= exp
¦�

p+ 1
��
µ+λ
�
+
�

p2+ 1
�
σ2/2
©

exp
�

pσ2
�

− exp
¦�

p+ 1
��
µ+λ
�
+
�

p2+ 1
�
σ2/2
©

= exp
¦�

p+ 1
��
µ+λ
�
+
�

p2+ 1
�
σ2/2
©�

exp
�

pσ2
�
− 1
�

.

(3)

Also,

σ2
zp = E
�

Z2p
�
− (E [Z p])2

= exp
¦

2p
�
µ+λ
�
+
�
2p
�2
σ2/2
©
−
�

exp
¦

p
�
µ+λ
�
+ p2σ2/2
©�2

= exp
¦

2p
�
µ+λ
�
+ 2p2σ2
©
− exp
¦

2p
�
µ+λ
�
+ p2σ2
©

= exp
¦

2p
�
µ+λ
�
+ p2σ2
©

exp
¦

p2σ2
©
− exp
¦

2p
�
µ+λ
�
+ p2σ2
©

= exp
¦

2p
�
µ+λ
�
+ p2σ2
©�

exp
�

p2σ2
�
− 1
�

,

σzp = exp
¦

p
�
µ+λ
�
+ p2σ2/2
©p

exp
�

p2σ2
�− 1, (4)
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and

σz = exp
¦�
µ+λ
�
+σ2/2
©p

exp
�
σ2
�− 1. (5)

From equations (2), (3), (4) and (5)

ρzzp =
exp
¦
(p+ 1)
�
µ+λ
�
+ (p2+ 1)σ2/2

©¦
exp
�

pσ2
�
− 1
©

exp
��
µ+λ
�
+σ2/2
	p

exp
�
σ2
�− 1 · exp
�

p
�
µ+λ
�
+ p2σ2/2
	p

exp
�

p2σ2
�− 1

ρzzp =

¦
exp
�

pσ2
�
− 1
©

p
exp
�
σ2
�− 1 ·
p

exp
�

p2σ2
�− 1

. (6)

It is an interesting observation from (6) that for the lognormal distribution, the correlation is

independent of λ.

From equation (3) and (4),

σz/σzp =
exp
¦
(µ+λ) +σ2/2

©p
exp
�
σ2
�− 1

exp
�

p(µ+λ) + p2σ2/2
	p

exp
�

p2σ2
�− 1

. (7)

4. Sample Statistics

From equation (1), writing bxc,t in terms of the combining parameters ω, k and λ,

bxc,t =ωbx t + (1−ω)
h

x +
�

1− k
p

n+ 1− t
�

rbzbzp

�
sbz/sbzp

�¦�
bx t +λ
�p −E
��
bx t +λ
�p�©i

.

Substituting σz/σzp from (7) for sbz/sbzp , substituting for E
��

X t +λ
�p�

, and substituting sam-

ple fitted values ln (bx +λ) and s for population variables µ+λ and σ respectively,

bxc,t =ωbx t + (1−ω)
�

x +
�

1− k
p

n+ 1− t
�

rbzbzp

exp
n

ln (bx +λ) + s2/2
op

exp
�
s2
�− 1

exp
n

p · ln (bx +λ) + p2s2/2
op

exp
�

p2s2
�− 1

×
n�
bx t +λ
�p − exp
�

p · ln (bx +λ) + p2s2/2
�o�

=ωbx t + (1−ω)
h

x +
�

1− k
p

n+ 1− t
�
ϕ
�

p,λ, bx t

�i
, (8)

where

ϕ
�

p,λ, bx t

�
= rbzbzp

exp
n

ln (bx +λ) + s2/2
op

exp
�
s2
�− 1

exp
n

p · ln (bx +λ) + p2s2/2
op

exp
�

p2s2
�− 1

×
h�
bx t +λ
�p − exp
�

p · ln (bx +λ) + p2s2/2
�i

.
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Discussion. The values of s2 and σ2 depend on the particular data. Typically, s2 and σ2 being

the standard deviations of the logarithms of bx t and X t , respectively, are naturally small. If

σ2 were zero, because there are no variations in the time series to be explained by the time

series model, then there would be no MSE and therefore no MSE to be improved by antithetic

combining. As the variance is increased, the amount of variance unexplained by the fitted model

increases, contributing to the amount of MSE improvement that is possible. On the other hand,

rbxbx p starts out at approximately −1 (see Figure 1a), with near maximum combining contribution

to MSE improvement, but as rbxbx p moves away from −1 (see Figure 1b), the error in estimating

bx t from bx p
t increases (see Appendix A), and the combining contribution falls. The joint effect is

an improvement in MSE that peaks and then declines.

(a) Correlation coefficient vs. p (b) Correlation coefficient vs. σ2

(c) Percentage reduction in MSE due to anti-

thetic combining vs σ2

Figure 1: Computer Simulations

To illustrate this, the results of a hypothetical simulation for X t = exp(Yt), where

Yt = 0.8Yt−1+εt , t = 2,3, · · · , 1000, and εt ∼ N(0,σ2), is shown in Figure 1c. The maximum

improvement in MSE is about 10.6% where the variance is about 5. In practice, antithetic

combining will perform more or less well depending on the variance of an actual time series.

It is a simple matter to apply pre and post antithetic model fitting transformations X ∗t = X
g
t

and
�

X ∗t
�1/g

, where g is chosen to accomplish any desired variance.

From Appendix B,

lim
p→0−, s→0

ϕ
�

p,λ, bx t

�
= exp
n

ln (bx +λ)
on
−ln (bx +λ) + ln

�
bx t +λ
�o

, (9)
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therefore, as p→ 0−, (8) becomes

lim
p→0−
bxc,t =ωbx t + (1−ω)

h
x +
�

1− k
p

n+ 1− t
�

exp
n

ln (bx +λ)
o

×
n
−ln (bx +λ) + ln

�
bx t +λ
�oi

. (10)

5. Optimizing ω,λ and k

Let the error in bxc,tbe ξt = bxc,t − x t . We are interested in finding the optimal ω,λ

and k that minimize
∑n

t=2 ξ
2
t by setting the limit as p approaches 0 from the left of the

partial derivatives limp→0−, s→0
∂

∂ω,λ,k

∑n
t=2 ξ

2
t = 0 and solving for ω,λ and k. This can

be simplified by permutation of the limit and the derivatives (see Buck [1]), and solving
∂

∂ω,λ,k
limp→0−, s→0

∑n
t=2 ξ

2
t = 0. The limit as p approaches zero from the left of the sum of

squared errors is

lim
p→0−, s→0

n∑

t=2

ξ2
t = lim

p→0−, s→0

n∑

t=2

�
bxc,t − x t

�2
.

Applying the power rule for limits limp→0−, s→0

∑n
t=2 ξ

2
t =
∑n

t=2

¦
limp→0−,s→0

�
bxc,t − x t

�©2
,

and from (9)

lim
p→0−, s→0

n∑

t=2

ξ2
t =

n∑

t=2

h
ωbx t + (1−ω)
h

x +
�

1− k
p

n+ 1− t
�

exp
n

ln (bx +λ)
o

×
n
−ln (bx +λ) + ln

�
bx t +λ
�oi− x t

i2
,

∂
∑n

t=2 ξ
2
t

∂ω
=2

n∑

t=2

h
ωbx t + (1−ω)
h

x̄ + (1− k
p

n+ 1− t) exp
n

ln (bx +λ)
o

×
n
−ln (bx +λ) + ln

�
bx t +λ
�oi− x t

ih
bx t − x̄ − (1− k
p

n+ 1− t)

× exp
n

ln (bx +λ)
on
−ln (bx +λ) + ln

�
bx t +λ
�oi

,

∂
∑n

t=2 ξ
2
t

∂ k
=2

n∑

t=2

h
ωbx t + (1−ω)
h

x̄ + (1− k
p

n+ 1− t) exp
n

ln (bx +λ)
o

×
n
−ln (bx +λ) + ln

�
bx t +λ
�oi− x t

ih
−(1−ω)
p

n+ 1− t

× exp
n

ln (bx +λ)
on
−ln (bx +λ) + ln

�
bx t +λ
�oi

,

∂
∑n

t=2 ξ
2
t

∂ λ
=2

n∑

t=2

h
ωbx t + (1−ω)
h

x̄ + (1− k
p

n+ 1− t) exp
n

ln (bx +λ)
o
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×
n
−ln (bx +λ) + ln

�
bx t +λ
�oi− x t

ih
(1−ω)
�

1− k
p

n+ 1− t
�

× 1/ (bx +λ)exp
n

ln (bx +λ)
on
−ln (bx +λ) + ln

�
bx t +λ
�o

+ (1−ω)
�

1− k
p

n+ 1− t
�

exp
n

ln (bx +λ)
on
−1/ (bx +λ) + 1/

�
bx t +λ
�oi

.

6. Empirical Example

For example, consider the CompanyX case study by Chatfield and Prothero [2]. The 77

months of data for the study (given in that paper) are charted below in Figures 2a & 2b. That

paper also reported the results of fitting an ARIMA model to the data:

(1+ .37B)∇∇12 x .34
t = (1− .79B12)at , where x t are data, ∇ is the differencing operator, B is

the backward shift operator, and at are random errors. The discussants identified many ways,

including model misspecification, in which the results may have been biased. The authors

acknowledged that forecasts from the ARIMA model tended to be biased high and divergent.

We recognize that outcome as resulting from sampling bias that antithetic time series analysis

was created to address. The distribution of this data is skewed to the right, similar to the

lognormal distribution.

This gives us an independent benchmark with which to compare combined antithetic fitted

values. In this paper we fit a twelfth order autoregressive model AR12: x t =
∑12

l=1Φl x t−l+et ,

t = 1,2, · · · to the first forty data values from January 1965 to April 1968. That makes thirty

seven data values from May 1968 to May 1971 available for comparison with a forecast for

that period. The model parameter estimates are bΦ1 = .123, bΦ2 = .025, bΦ3 = −.055, bΦ4 =

.019, bΦ5 = .005, bΦ6 = .007, bΦ7 = −.012, bΦ8 = −.010, bΦ9 = .004, bΦ10 = .039, bΦ11 = .007,
bΦ12 = .884. The actual and fitted values are shown in Figure 2a. The combining procedure

described in Appendix A is then applied to the fitted values (the calculations are performed

using the computer program FOURCAST‡). The optimal combining model parameters are

ω = 1.17,λ = 432, k = −0.153. The AR12 model original and combined fitted MSE values

are 2226 and 1906 respectively, a reduction of 14.4%. The forecasts are shown in Figure 2b.

The April 1967 base month May 1968 to May 1971 ex ante 37 month ARIMA, AR12 (not

shown) and combined forecast MSE values are 509007,30759 and 4801 respectively. When

the AR12 model is refitted to x .34
t to correct it for heteroscedasticity, the resulting ex ante 37

month forecast MSE is 30683. Either way, the combined forecast MSE is 99% less than that

for the ARIMA model and 84% less than that for the AR12 model. The ARIMA and AR12

forecasts are consistently high and low respectively. While the ARIMA forecasts diverge, the

combined antithetic forecasts converge.

‡http://www.fourcast.net, CompanyX data available here: http://www.fourcast.net/fourcast/
CompanyX.zip
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(a) Actual, fitted, & combined fitted values (b) Forecasts for May 1968 to May 1971

Figure 2: CompanyX Data

To obtain an improved understanding of the combining function, we explore the effects

of ω,λ, k on MSE. The combined fitted MSE values are plotted in Figures 3a, 3b, 3c. In each

case MSE is a smooth continuous surface. This supports our proposal that the derivatives ∂

∂ω,λ,k

exist. In this example, MSE is not very sensitive to changes in λ. It does no harm and will be

necessary for cases when the data contain negative numbers.

(a) MSE vs. ω, λ (b) MSE vs. ω, K

(c) MSE vs. K , λ

Figure 3: MSE vs ω, λ, K

7. Conclusions

Given that the parameters of a time series model are to be estimated. It is well known that

for a specified MSE=Variance +Bias2, the smaller the bias of the estimate, the larger is its vari-

ance and vice versa. Antithetic time series theory is intended to eliminate the bias and reduce
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the MSE for a specified variance of the fitted values that are obtained from the mathematical

model. The specified variance is associated with the purely random error component. The

bias is associated with a systematic error component. Antithetic time series analysis can be

applied to reduce bias in fitted values from autoregressive time series models so as to reduce

MSE. Where there is no bias, the combining parameter ω is simply = 1.0 and the combined

values are the original values. The combined MSE is a smooth, continuous, differentiable

function of the combining parameters w,λ and k. A suggestion for future research is to inves-

tigate the applicability of antithetic combining to data distributions other than the lognormal

distribution.

Appendix A: Bias Reduction

Since limp→0−, s→0 Corr (x , x p) = −1, we can express x
p
t in the original units of x t by

means of the linear regression of x t on x
p
t : x t = c0+ c1 x

p
t + εt , where εt is an error term that

approaches zero, so that a near perfect estimate of x t is obtained from

x ′t = c0+ c1 x
p
t . (A1)

Now, suppose that x t = f
�

x t−1

�
+ εt , t = 2, · · · , n is a time series model that is biased due

either to serially correlated errors εt or sampling error or both. Estimates bx t of x t from this

model will be biased. To remove this bias, we power transform bx t to obtain bx p
t . Then, we use

equation (A1) to convert bx p
t back to the original units of x t . Hence

bx ′t = bc0+bc1bx p
t , (A2)

where bc0and bc1are least squares estimates obtained from the regression of bx ton bx p
t , and the

error approaches zero.

Both estimates bx t and bx ′t contain errors. These errors contain two components. One com-

ponent is purely random and one component is systematic bias. Combining the estimates

cancels the systematic bias component, leaving only the purely random component. The com-

bined estimate bxc,t is obtained from bxc,t = ωbx t + (1−ω)bx ′t , where −∞ ≤ ω ≤ ∞, and ω is

chosen to minimize the MSE =
∑n

t=2

�
x t − bxc,t

�2
/(n− 1). Likewise, the unbiased combined

estimate of a future value at time τis obtained from bxc,n(τ) =ωbxn(τ)+(1−ω)bx ′n(τ). Substi-

tuting for bc0 in (A2), bx ′t = bx−bc1bx p+bc1bx p
t = x+bc1

�
bx p

t − bx p
�

. Denoting sample variance and

covariance in x t by s2
x , bx ′t = x+
�

s2
bxbx p/s

2
bx p

��
bx p

t − bx p
�

, bx ′t = x+
�

s2
bxbx p/s

2
bx p

��
sbx/sbx
��
bx p

t − bx p
�

and bx ′t = x + rbxbx p

�
sbx/sbx p

��
bx p

t − bx p
�

. The combined fitted values are given by

bxc,t = wbx t + (1−ω)
n

x + rbxbx p

�
sbx/sbx p

��
bx p

t − bx p
�o

.

The steps for obtaining the combined antithetic fitted values are outlined as follows

Step 1: Estimate the model parameters and fitted values bx t = f
�

x t−1

�
, t = 2,3, · · · , n

Step 2: Set p = −0.001 to approximate p→ 0−
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Step 3: Calculate ω =
∑n

t=2

�
x t − bx ′t
��
bx t − bx ′t
�
÷∑nt=2

�
bx t − bx ′t
�2

Step 4: Calculate bxc,t =ωbx t + (1−ω)
n

x + rbxbx p

�
sbx/sbx p

��
bx p

t − bx p
�o

, t = 2,3, · · · , n

Appendix B: Limit as p→ 0−, s→ 0

We wish to find

lim
p→0−, s→0

ϕ
�

p,λ, bx t

�
= lim

p→0−, s→0
rbzbzp

exp
n

ln (bx +λ) + s2/2
op

exp
�
s2
�− 1

exp
n

p · ln (bx +λ) + p2s2/2
op

exp
�

p2s2
�− 1

×
h�
bx t +λ
�p − exp
�

p · ln (bx +λ) + p2s2/2
�i

.

Consider the Taylor expansion at p = 0 of

exp(p) = 1+ p+
p2

2
+

p3

6
+

p4

24
+ o
�

p4
�

. (A3)

Using (A3), we derive the Taylor expansion at p = 0 of

exp(p2s2)− 1= p2s2+
p4s4

2
+

p6s6

6
+ o
�

p6
�

. Hence,

1
p

exp
�

p2s2
�− 1

=
1

q
p2s2+

p4s4

2
+

p6s6

6
+ o
�

p6
� =

1

s|p|
q

1+
p2s2

2
+

p4s4

6
+ o
�

p4
� . (A4)

Using equation (A3), we derive the Taylor expansion at p = 0 of

exp
�

p · ln (bx +λ) + p2s2/2
�
=1+ p · ln (bx +λ) + p2s2/2+

1

2

n
p · ln (bx +λ) + p2s2/2

o2
+ o
�

p2
�

=1+ p · ln (bx +λ) + p2s2/2+
p2

2
· ln (bx +λ)2+ o

�
p2
�

. (A5)

The Taylor expansion at p = 0 of
�
bx t +λ
�p

is

�
bx t +λ
�p
= 1+ p · ln (bx +λ) + p2

2
· ln2 (bx +λ) + o

�
p2
�

. (A6)

By subtracting (A5) from (A6), we obtain the Taylor expansion at p = 0 of

h�
bx t +λ
�p − exp
n

p · ln (bx +λ) + p2s2/2
oi
=p
n
−ln (bx +λ) + ln

�
bx t +λ
�o

+
p2

2

§
−ln (bx +λ)2− s2+ ln2 �bx t +λ

�ª
+ o
�

p2
�

.

(A7)
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The Taylor expansion of ϕ
�

p,λ, bx t

�
at p = 0 may now be obtained by multiplication of

rbzbzp

exp
n

ln(bx+λ)+s2/2
oÆ

exp(s2)−1

exp
n

p·ln(bx+λ)+p2s2/2
o and the expansions (A4) and (A7) as follows.

ϕ
�

p,λ, bx t

�
=rbzbzp

exp
n

ln (bx +λ) + s2/2
op

exp
�
s2
�− 1

exp
n

p · ln (bx +λ) + p2s2/2
o · 1

s|p|
q

1+
p2s2

2
+

p4s4

6
+ o
�

p4
�

×
�

p
n
−ln (bx +λ) + ln

�
bx t +λ
�o
+

p2

2

§
−ln (bx +λ)2− s2+ ln2 �bx t +λ

�ª
+ o
�

p2
��

.

From (6) and Ridley [4], rbzbzp ↓ −1 as p ↓ 0−, s ↓ 0 and lims→0

p
exp(s2)−1

s
= 1, therefore

lim
p→0−, s→0

ϕ
�

p,λ, bx t

�
= exp
n

ln (bx +λ)
on
−ln (bx +λ) + ln

�
bx t +λ
�o

.
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