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Abstract. In this paper, we present a forward measure approach to hedge defaultable contingent claims

under stochastic interest rates. The relation of hedging strategies between the risk neutral measure and

forward measure is deduced. Under the invariance martingale property and reduced-form model for

default risk, to hedge a defaultable contingent claim depending on the forward price, one has to invest

the same amount of this contingent claim value in the defaultable zero-coupon, and use defaultfree

zero-coupon bond to hedge interest risk which extends the result of Blanchet-Scalliet, Jeanblane [4].
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1. Introduction

The traditional Black-Scholes option pricing formula [3] is derived under the assumption

that there is no default risk of the option issuer. In recent years, OTC options have become

increasingly popular, and hence the default risk of the option issuer should be considered

in the pricing. Default risk is the risk that the agents cannot fulfill their obligations in the

contracts. Modeling default risk is one of the fundamental problems of interest in finance. In

general, default risk models have two main categories: structural and reduced form. Reduced

form approach considers the default to be an exogenously specified jump process, derives the

default probability as the instantaneous likelihood of default. The default time is a totally

inaccessible stopping time, which is usually defined as the first jump time of a cox process

with a given intensity. For reduced form model, interested readers can refer to Jarrow and

Turnbull [8], Duffie and Singleton [5], Lando [10]. Bielecki and Rutkowski [2] described the

pricing and hedging of defaultable contingent claims for details.
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The forward measure pricing methodology was introduced by Jamshidian [7]. It has been

widely used in pricing securities when interest rates are stochastic. The formal definition of

a forward probability measure was explicitly introduced in Geman [6]. In particular, Geman

[6] observed that the forward price of any financial asset follows a (local) martingale under

the forward neutral probability associated with the settlement date of a forward contract.

Recently, the forward price is reinterpreted using the forward measure. It is shown that the

forward price is an expectation of the terminal payoff of the underlying asset price, like the

futures price which is a risk neutral expectation, except that the probability measure under

which the expectation is taken is different from the risk neutral measure by an adjustment

term.

The idea of our paper originates from Blanchet-Scalliet, Jeanblane [4], Liao and Huang

[12]. The former one gives the hedging porfolio of vulnerable contingent claims using de-

faultable zero-coupon and default-free assets, when the default-free market is complete, and

the second one applies the forward risk-neutral pricing approach to derive the closed-form

valuation of the vulnerable option under stochastic interests rates. Therefore, we try to hedge

defaultable contingent claims under stochastic interest rates using forward measure and for-

ward prices. Our result claims that there exists connection of hedging strategies between the

risk neutral measure and forward measure. Under the invariance martingale property and

reduced-form model for default risk, to hedge a defaultable contingent claim depending on

the forward price, one has to invest the same amount of this contingent claim value in the

defaultable zero-coupon, and use default-free zero-coupon bond to hedge interest risk which

extends the result of Blanchet-Scalliet, Jeanblane [4].

The paper is organized as follows: In Section 2, we first introduce the basic knowledge

of forward measure, then we present the valuation framework under forward measure and

reduced-form models for defaultable contingent claims. Correspondingly, the hedging strategy

is derived; In Section 3, we quickly summarize the main results of the article.

2. Valuation and Hedging under Forward Measure

2.1. Forward Measure and Forward Price

In this section, we introduce the forward measure approach which distinguishes the no-

arbitrage valuation within the classical Black-Scholes framework. Our aim is to price contin-

gent claims under stochastic interest rates.

Given a complete probability space (Ω,F , P∗), T is a strictly positive real number. Let

(Ft)t≥0 be the σ-algebra at time t, for any 0 ≤ t ≤ T , Ft ⊂ F , P∗ is the risk-neutral

measure. There are three financial assets in the market: the riskless asset βt(i.e., money

market account), a risky asset St(i.e., stock) and the defaultfree zero coupon bond B(t, T ).

The process βt satisfies dβt = βt rt d t, β0 = 1, and St , B(t, T ) satisfy respectively

dSt = St(rt d t +σt dWS(t)), S0 > 0, (1)

dB(t, T ) = B(t, T )(rt d t + b(t, T )dWB(t)), B(T, T ) = 1, (2)

where rt stands for the instantaneous, continuously compounded interest rate, WS(t) and
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WB(t) are standard Brownian motion defined on (Ω,F , P∗) with the correlation coefficient ρ.

By I t ô formula, the discount stock prices under risk neutral measure become

dS̃t = d(Stβ
−1
t ) = S̃tσt dWS(t).

Definition 1. A probability measure PT is called the forward martingale measure (or forward

measure) for the settlement date T, with the Radon-Nikod ým derivative given by

dPT

dP∗
=

β−1
T

EP∗[β
−1
T ]
=

1

βT B(0, T )
.

Notice that for every t ∈ [0, T], when restricted to the Ft ,

ηt =
dPT

dP∗

�

�

�

�

Ft

= EP∗

�

1

βT B(0, T )

�

�

�

�

Ft

�

=
B(t, T )

βt B(0, T )
.

When the bond price is governed by (2), an explicit representation for ηt is available, and

dηt = −ηt b(t, T )d t.

The forward price of a European contingent claim X which settles at time T can be ex-

pressed as the conditional expectation under the forward measure PT , that is,

FX (t, T ) = X t/B(t, T ) = EPT [X |Ft], for all t ∈ [0, T]. Moreover, the relative price of any

traded security (which pays no coupons or dividends) follows a local martingale under the

forward probability measure PT , provided that the price of a bond which matures at time T is

taken as a numeraire. For example, the forward price of St follows

FS(t, T ) = St/B(t, T ) = EPT [ST |Ft], for all t ∈ [0, T]. For simplicity, we write

b(t, T ) = bt . By I t ô formula,

dFS(t, T ) =B(t, T )−1dSt + St dB(t, T )−1 + d〈St , B(t, T )−1〉

=FS(t, T )(rt d t +σt dWS(t)− rt d t − bt dWB(t) + b2(t, T )d t −ρσt bt d t)

=FS(t, T )(σt dWS(t)− bt dWB(t) + (b
2
t −ρσt bt)d t).

Let σFS
dWt = σt dWS(t)− bt dWB(t), and σ2

FS
= σ2

t − 2σt btρ+ b2
t , then

dFS(t, T ) =FS(t, T )(σFS
dWt + (b

2
t −ρσt bt)d t)

=FS(t, T )σFS
dW PT

FS
,

where dW PT

FS
= dWt +ψt d t, ψt = (b

2
t −ρσt bt)/σFS

.

2.2. The Valuation Framework with Default Risk

In this section, the forward measure approach of the Black-Scholes valuation under stochas-

tic interest rates and default risk are employed.

A default event occurs at a random time τ(i.e., a non-negative random variable). The

default process is defined as Nt ¬ 1{τ≤t}, and Dt = σ(Ns, s ≤ t), the filtration D is used to
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describe the information about default time, where D = {Dt , 0 ≤ t ≤ T}. At any time t, the

agent’s information on the securities prices and default time is Gt = Ft ∨ Dt and the agent

knows whether or not the default has appeared. Hence, the default time τ is a G stopping

time where G = {Gt , 0 ≤ t ≤ T}. In fact, G is the smallest filtration which contains F .

From Blanchet-Scalliet, Jeanblance [4] and Bielecki, Rutkowski [2], there exists an equivalent

martingale measure denoted by Q∗ in the enlarged market G , and the invariance martingale

property ((H) hypothesis) holds: AnyF -square integrable martingale is a G -square integrable

martingale.

Define Gt ¬ Q∗(τ > t|Ft), Γt ¬ − ln Gt , Γt is called F hazard process of τ. In general,

(H) hypothesis is unstable when changing probability measure. By Proposition 1 of Blanchet-

Scalliet and Jeanblane [4], ifF -market is complete and arbitrage-free, G -market is arbitrage-

free, then (H) hypothesis holds under any equivalent martingale measure.

To prove that G -market is arbitrage-free, we need to prove the existence of a forward

measure QT in G -market. We know PT is the forward measure for the F -market and ηt is its

Radon-Nikodym density, the process FS(t, T )ηt is F square integrable martingale under P∗,

hence a G square integrable martingale under P∗. Then there exists at least one probability

measure QT defined as dQT |Ft
= ηt dP∗|Ft

, and the Gt -market is arbitrage-free.

Definition 2. Let F T
t = QT (τ≤ t|Ft), GT

t = 1−F T
t , F T

t < 1. ThenF hazard process of τ under

QT is denoted by ΓT
t = − ln GT

t = − ln(1− F T
t ).

Furthermore, without loss of generality, suppose dQT |Gt
= ξt dQ∗|Gt

, the Randon-Nikod ým

derivatives of QT with respect to Q∗ satisfies

dξt = ξt(ψt dWt + θt dWB(t) +φt dMt). (3)

Then dW PT

B = dWB(t) + θt d t are standard Brownian Motion under QT ,

dM T
t = dMt −φt dΓt , LT

t = 1{τ>t}e
ΓT

t are G -martingale under QT .

Since forward measure QT is also a risk-neutral equivalent martingale measure, from Bi-

elecki, Rutkowski [2], the following properties hold: (F T
t ) is nonnegative bounded submartin-

gale, ΓT
t is increasing, and LT

t = 1{τ>t}e
ΓT

t is martingale. Moreover, for G measurable random

variable Y , we have

EQT

�

1{τ>t}Y
�

�Gt

�

= 1{τ>t}e
ΓT

t EPT

�

Y
�

�Ft

�

.

We assume now that a defaultable zero-coupon bond ρ(t, T ) of maturity T is traded on the

market, X t is the defaultable contingent claim. We also assume that the market is arbitrage

free, then under forward measure QT , the forward prices of ρ(t, T ) and X t satisfy

Fρ(t, T ) =
ρ(t, T )

B(t, T )
= EQT [1{τ>T}|Gt] = 1{τ>t}e

ΓT
t EPT [GT

T |Ft]¬ LT
t Zt , (4)

FX (t, T ) =
X t

B(t, T )
= EQT [1{τ>T}XT |Gt] = 1{τ>t}e

ΓT
t EPT [GT

T XT |Ft] ¬ LT
t ZX

t , (5)

where Zt ¬ EPT [GT
T |Ft], ZX

t ¬ EPT [GT
T XT |Ft].

Similar to the results under risk neutral measure in Blanchet-Scalliet, Jeanblance [4], we

have Lemma 1, 2.
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Lemma 1. Suppose that (H) holds under QT and F T is continuous.Then

dFρ(t, T ) = LT
t−dZt − Fρ(t−, T )dM T

t .

Proof. The result follows from Fρ(t, T ) = LT
t Zt , d LT

t = −LT
t−dM T

t and I t ô fromula.

Lemma 2. Suppose that (H) holds under QT and F T is continuous, Y ∈ FT is integrable. Then

the G -martingale Yt = EQT [Y 1{τ>T}|Gt] admits the following decomposition

Yt = ZY
0 +

∫ t∧τ

0

eΓ
T
u dZY

u −

∫ t

0

Yu−dM T
u ,

where ZY is the F -martingale, ZY
t = EPT [Y GT

T |Ft].

Since the default-free market is complete and GT
T ∈ F , GT

T XT ∈ F , there exist predictable

processes (Ut), (U
X
t ), (Vt), (V

X
t ) and the constants Z0, ZX

0 such that

Zt = Z0 +

∫ t

0

UudFS(u, T ) +

∫ t

0

VudW PT

B , (6)

ZX
t = ZX

0 +

∫ t

0

UX
u dFS(u, T ) +

∫ t

0

V X
u dW PT

B . (7)

Note that we add the special risk factor in zero coupon bond in equations (6), (7) directly in

terms of W PT

B here.

2.3. Hedging Strategies

In the following we give the relation of hazard processes Γt and ΓT
t , and also the relation

of predictable processes between risk-neutral probability measure and forward measure.

From Blanchet-Scalliet and Jeanblance [4], under risk-neutral measure,

ρ(t, T )β−1
t = EQ∗(1{τ>T}β

−1
T |Gt) = 1{τ>t}e

Γt EP∗(GTβ
−1
T |Ft)¬ Lt m̃t , (8)

X tβ
−1
t = EQ∗(1{τ>T}XTβ

−1
T }|Gt) = 1{τ>t}e

Γt EP∗(GT XTβ
−1
T |Ft)¬ Lt m̃

X
t . (9)

Assume that

m̃t = m̃0 +

∫ t

0

µudS̃u, m̃X
t = m̃X

0 +

∫ t

0

µX
u dS̃u,

where m0 and mX
0 are constants, µu and µX

u are predictable processes.

Lemma 3. The Randon-Nikod ým derivatives of QT with respect to Q∗ satisfies

dξt = ξt(ψt dWt − bt dWB(t)).
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The connections of the predictable processes between risk-neutral probability measure and for-

ward measure are

Ut = µt , Vt =
(µtSt −mt)bt

B(t, T )
,

UX
t = µ

X
t , V X

t =
(µX

t St −mX
t )bt

B(t, T )
.

Proof. Combine (4) with (8), we have Zt =
m̃tβt

B(t,T)
e−
∫ t

0
φsdΓs . By I t ô formula

d(B(t, T )−1m̃tβt) =B(t, T )−1
�

(βtµtσt S̃t dWS(t) + m̃tβt rt d t) +mt(−rt d t − bt dWB(t) + b2
t d t)

−µtσtSt btρd t
�

=B(t, T )−1[µtStσt dWS(t)−mt bt dWB(t) + (mt b2
t −µtσtSt btρ)d t].

Because σt dWS(t) = σFS
dWt + bt dWB(t), σFS

dWt = σFS
dW PT

FS
+ (σt btρ − b2

t )d t, then

µtStσt dWS(t)−mt bt dWB(t) + (mt b2
t −µtσtSt btρ)d t

=µtStσFS
dWt + (µtSt −mt)bt dWB(t) + (mt b2

t −µtσtSt btρ)d t

=(µtStσFS
dW PT

FS
+µtSt(σt btρ− b2

t )d t + (µtSt −mt)bt(dW PT

B − θt d t)

+ (mt b2
t −µtσtSt btρ)d t

=µtStσFS
dW PT

FS
+ (µtSt −mt)bt dW PT

B − ((µtSt −mt)b
2
t + (µtSt −mt)θt bt)d t

=µtStσFS
dW PT

FS
+ (µtSt −mt)bt dW PT

B − (θt + bt)(µtSt −mt)btd t.

Using I t ô formula again, we have

dZt =
m̃tβt

B(t, T )
d(e−
∫ t

0
φsdΓs) + e−
∫ t

0
φsdΓs d

�

m̃tβt

B(t, T )

�

=e−
∫ t

0
φsdΓs

�

It +
1

B(t, T )

�

µtStσFS
dW PT

FS
+ (µtSt −mt)bt dW PT

B

�

�

=e−
∫ t

0
φsdΓs

�

It +µt dFS(t, T ) +
(µtSt −mt)bt

B(t, T )
dW PT

B

�

,

where

It =
−mtφt dΓt + (θt + bt)(µtSt −mt)bt d t

B(t, T )
.

Because Zt can be considered as the forward prices of GT at time t, Zt is martingale under

forward measure PT , then the term It equals zero, then we have φt = 0, θt = −bt . Moreover,

combine with (6), we conclude Ut = µt and Vt =
(µt St−mt)bt

B(t,T)
. The proofs of equations about

UX
t and V X

t are essentially the same as that of Ut and Vt . �

From Lemma 3, φt = 0 means ΓT
t = Γt , which implies that the hazard processes of default

risk are the same under risk-neutral measure and forward measure.
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Theorem 1. Suppose F -market is complete and arbitrage free, the G -market is arbitrage free,

and Ft = 1 − Gt = PT (τ ≤ t|Ft) is continuous, FX (t, T ) is the forward price of contingent

claims XT 1{τ>T} at time t, that is, FX (t, T ) = EQT

[1{τ>T})XT |Gt]. When τ > t, there exist

self-financing hedging strategies (Φ1(t),Φ2(t),Φ3(t),Φ4(t)) such that

Φ1(t)βt +Φ2(t)St +Φ3(t)ρ(t, T ) +Φ4(t)B(t, T ) = X t ,

where

Φ2(t) = eΓt

�

UX
t −

ZX
t

Zt

Ut

�

= eΓt

�

µX
t −

mX
t

mt

µt

�

,

Φ3(t) =
ZX

t

Zt

=
mX

t

mt

,

Φ4(t) = (bt B(t, T ))−1eΓt

�

V X
t −

ZX
t

Zt

Vt

�

= B(t, T )−2eΓt

�

µX
t −

ZX
t

Zt

µt

�

St

Proof. By Lemma 2, we have

FX (t, T ) =ZX
0 +

∫ t∧τ

0

eΓu dZX
u −

∫ t

0

FX (u−, T )dM T
u

=ZX
0 +

∫ t∧τ

0

eΓu UX
u dFS(u, T ) +

∫ t∧τ

0

eΓu V X
u dW PT

B −

∫ t

0

1{τ>u}e
Γu−ZX

u−dM T
u .

On the other hand, from Lemma 1,

dM T
u =

dFρ(u, T )− Lu−dZu

Fρ(u−, T )
, Fρ(t, T ) = LT

t Zt ,

then the above equation becomes

ZX
0 +

∫ t∧τ

0

eΓu UX
u dFs(u, T ) +

∫ t∧τ

0

eΓu V X
u dW PT

B +

∫ t∧τ

0

ZX
u−

Zu

dFρ(u, T )

−

∫ t∧τ

0

eΓu
ZX

u−

Zu

UudFS(u, T )−

∫ t∧τ

0

eΓu
ZX

u−

Zu

VudW PT

B

=ZX
0 +

∫ t∧τ

0

eΓu

�

UX
u −

ZX
u

Zu

Uu

�

dFS(u, T ) +

∫ t∧τ

0

eΓu

�

V X
u −

ZX
u

Zu

Vu

�

dW PT

B

+

∫ t∧τ

0

ZX
u

Zu

dFρ(u, T ).

Therefore

Φ2(t) = eΓt

�

UX
t −

ZX
t

Zt

Ut

�

, Φ3(t) =
ZX

t

Zt

, Φ̃(t) ¬ eΓt

�

V X
t −

ZX
t

Zt

Vt

�

,
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and

dFX (t, T ) = Φ2(t)dFS(t, T ) +Φ3(t)dFρ(t, T ) + Φ̃(t)dW PT

B .

By Lemma 3, Φ2(t) = eΓt

�

µX
t −

mX
t

mt
µt

�

. From (4), (5), FX (t, T ) =
ZX

t

Zt
Fρ(t, T ) = Φ3(t)Fρ(t, T ),

then Φ1(t)βt +Φ2(t)St +Φ4(t)B(t, T ) = 0. From equation (2),

Φ4(t) =(btB(t, T ))−1Φ̃(t)

=B(t, T )−2eΓt

�

µX
t St −mX

t −
ZX

t

Zt

(µtSt −mt)

�

=B(t, T )−2eΓt

�

µX
t −

ZX
t

Zt

µt

�

St .

Then Φ1(t) can be calculated easily. �

2.4. Example

In this subsection, we look at a special case with ρ = 1, at which the risk factor that driven

St and B(t, T ) is the same. Then WS(t) =WB(t) ¬Wt ,

σFS
= σt − bt , ψt = (b

2
t −ρσt bt)/σFS

= −bt .

Let dW T
t ¬ dW PT

FS
= dW PT

B = dWt − bt d t, it is easy to get

dFS(t, T ) = FS(t, T )(σt − bt)dW T
t . (10)

Lemma 2 and subsequent equations (6), (7) degenerate to the following form:

Zt = Z0 +

∫ t

0

ŨudFS(u, T ), ZX
t = ZX

0 +

∫ t

0

ŨX
u dFS(u, T ). (11)

Lemma 4. When ρ = 1, the Randon-Nikod ým derivative of QT with respect to Q∗ satisfies

dξt = −ξt bt dW (t). Moreover, the connections of the predictable processes between risk-neutral

probability measure and forward measure are

Ũt =
µtσtSt −mt bt

St(σt − bt)
, ŨX

t =
µX

t σtSt −mX
t bt

St(σt − bt)
.

Proof. From the proof of Lemma 3, it follows that

dZt =B(t, T )−1
�

µtStσFS
dW PT

FS
+ (µtSt −mt)btdW PT

B

�

=B(t, T )−1
�

µtSt(σt − bt)dW T
t + (µtSt −mt)btdW T

t

�

=B(t, T )−1(µtStσt −mt bt)dW T
t .

Combine the above results with (10), the result follows easily. �
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Theorem 2. If the F -market is complete and arbitrage free, the G -market is arbitrage free,

and F T
t = 1− GT

t = QT (τ ≤ t|Ft) is continuous, FX (t, T ) is the forward price of contingent

claims XT 1{τ>T} at time t, that is, FX (t, T ) = EQT [1{τ>T}XT |Gt]. When τ > t, there exist

self-financing hedging strategy (Φ)t = (Φ1(t),Φ2(t),Φ3(t)) such that

Φ1(t)B(t, T ) +Φ2(t)St +Φ3(t)ρ(t, T ) = X t ,

where

Φ1(t)B(t, T ) = −eΓt

�

ŨX
t −

ZX
t

Zt

Ũt

�

St ,

Φ2(t) = eΓt

�

ŨX
t −

ZX
t

Zt

Ũt

�

, Φ3(t) =
ZX

t

Zt

.

Proof. By use of the results of Lemma 2, we have

FX (t, T ) =ZX
0 +

∫ t∧τ

0

eΓu dZX
u −

∫ t

0

FX (u−, T )dM T
u

=ZX
0 +

∫ t∧τ

0

eΓu ŨX
u dFS(u, T )−

∫ t

0

1{τ>u}e
Γu−ZX

u−dM T
u

=ZX
0 +

∫ t∧τ

0

eΓu ŨX
u dFS(u, T ) +

∫ t

0

1{τ>u}e
Γu−ZX

u−

dFρ(u, T )− LT
u−dZu

Fρ(u−, T )

=ZX
0 +

∫ t∧τ

0

eΓu ŨX
u dFS(u, T ) +

∫ t∧τ

0

ZX
u−

Zu

dFρ(u, T )−

∫ t∧τ

0

eΓu
ZX

u−

Zu

UudFS(u, T )

=ZX
0 +

∫ t∧τ

0

eΓu

�

ŨX
u −

ZX
u

Zu

Ũu

�

dFS(u, T ) +

∫ t∧τ

0

ZX
u

Zu

dFρ(u, T ),

Therefore

Φ2(t) = eΓt

�

ŨX
t −

ZX
t

Zt

Ũt

�

, Φ3(t) =
ZX

t

Zt

.

and X t = ρ(t, T )
ZX

t

Zt
= Φ3(t)ρ(t, T ), Φ1(t)B(t, T ) +Φ2(t)St = 0, so

Φ1(t)B(t, T ) = −eΓt

�

ŨX
t −

ZX
t

Zt

Ũt

�

St .

�

3. Conclusions

In conclusion, when the interest rate is stochastic, under the invariance martingale prop-

erty and reduced-form model for default risk, the hedging strategy is based on riskless asset,
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risky asset, defaultable zero-coupon bond and the defaultfree zero-coupon bond, which is

different from the result in Blanchet-Scalliet and Jeanblane [4] under risk neutral measure.

The amount one has to invest in the defaultable zero-coupon is equal to this contingent claim

value, and also one has to use another security named defaultfree zero-coupon bond to hedge

interest risk which extends the result of Blanchet-Scalliet, Jeanblane [4]. But when ρ = 1,

the risky asset and the defaultfree zero-coupon bond have the same risk factor, it is possible

to hedge the contingent claims using the riskless asset, risky asset, defaultable zero-coupon

bond. Moreover, there exists connection of hedging strategies between the risk neutral mea-

sure and forward measure. In the future, we hope our results can be used to better understand

[1, 13, 14, 9, 11, 15].
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