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Abstract. In this paper Wilson frame as a generalization of Wilson bases has been defined. A sufficent
condition for a Wilson system to be a Wilson Bessel sequence in terms of a Gabor Bessel sequence
has been given. It is shown that the canonical dual frame of a Wilson frame may not have a Wilson
structure.Also,a sufficient condition for two Wilson Bessel sequences to be dual frames has been given
in terms of dual Gabor frames.
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1. Introduction

Gabor systems are time and frequency shifted images of a signal function f, called an
atom. Gabor systems have become a popular tool, both in theory and applications. However,
one drawback in view of Balian-Low Theorem is that it is impossible to construct Gabor bases
for L2(R) having good time-frequency localization [6]. Replacing the frequency-shift (modu-
lation) with multiplication by suitably chosen trigonometric functions, we get a system called
Wilson system which under certain conditions is an orthonormal basis.

Using ideas of Wilson [8, 9], Daubechies, Jaffard and Journe [3] constructed orthonormal
Wilson bases which have good localization properties in time and frequency simultaneously.
In [4], it has been proved that Wilson bases of exponential decay are unconditional bases for
all modulation spaces on R including the classical Bessel potential space and the Schwartz
spaces. Also, Wilson bases are no unconditional bases for the ordinary LP—spaces for p # 2
[4]. Approximation properties of Wilson bases are studied in [1].

Generalizations of Wilson bases to non-rectangular lattices are discussed in [7] with mo-
tivation from wireless communication and cosines modulated filter banks. Modified Wilson
orthonormal bases are studied in [10].

This paper starts with the definition of a Wilson system [5] followed by the definition of a
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Wilson frame.

In this paper, a sufficient condition for a Wilson system to be a Wilson Bessel sequence
in terms of a Gabor Bessel sequence is given.It is shown that the canonical dual frame of a
Wilson frame may not have a Wilson structure.Finally, a sufficient condition for two Wilson
Bessel sequences to be dual frames is given.

2. Preliminaries

Definition 1. A sequence {x,} in a Hilbert space H is said to be a frame for H if there exist
constants A and B with 0 <A < B < oo such that

Allx]? < 1x,x,) 2 < Bllx|I?, x € H 1)
n

The positive constants A and B, respectively, are called lower and upper frame bounds for
the frame {x,}. The inequality (1) in Definition 1, is called the frame inequality for the frame
{x,}.A sequence {x,} € H is called a Bessel sequence if it satisfies upper frame inequality in
(1) of Definition 1.

Definition 2. For a Bessel sequence {x,} in a Hilbert space H, the frame operator S is defined as
S : H — H such that Sx = Y.{x, x,)x,.for all x in H.

Daubechies, Grossmann and Meyer [3] were credited for combining Gabor analysis with
frame theory. They were the first to construct tight frames for L?(R) having the form {E,,,,, Tha8}mnezs
where
Epp : L2(R) = E2(R), (Epp8)(x) = ™™ g(x — na)

and
Thg : L*(R) = E*(R), (T,u8)(x) = g(x —na), a>0,b>0.

Definition 3. Let ¢ € L?(R) and a, b be positive constants.  Then, the sequence
{EmbTha&}mnez is called a Gabor system for L?(R). Further, {EmpTha&}tmnez 1s called a Ga-
bor frame for L2(R),if there exist constants A and B with 0 <A < B < oo such that

AlFIP < D I By Tua@) P < BIFIP, f € LA(R) 2)
n
The sequence {E,,;;, Tyq8}m nez is called a Gabor Bessel sequence for L2(R) if it satisfies the upper
frame inequality in (2) in Definition 3.
For literature related to Gabor frames, one may refer to [2]
Definition 4 ([5]). For g € L%(R), the associated Wilson system W(g) = {Ying} rez is given
by the functions e

wk, n8 = CnTg (En + (—1)k+”E_n)g ,k€Zandne Ny,

where ¢y = %, and ¢, = %for n=>1and Ny =NU {0}.
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3. Main Results

We begin this section with the definition of a Wilson frame.

Definition 5. The Wilson system W(g) = {yy &} kez for L?(R) is called a Wilson frame, if
neNy

there exist constants A and B with 0 < A < B < oo such that

AlFIP< D U i) <BIFIR, forall f€LX(R). 3)

keZ
neNg

The constants A and B are called lower frame bound and upper frame bound respectively

for the Wilson frame W(g).The Wilson system W(g) = {1 ,&} k2 is called a Wilson Bessel

neNg
sequence if it satisfies upper frame inequality in (3) in Definition 5.

In the following result, we give a sufficient condition for a Wilson system to be a Wilson
Bessel sequence in terms of a Gabor Bessel sequence.

Theorem 1. Let g € L?(R).Let {E, T« g}n, kez be a Gabor Bessel sequence with Bessel bound
2
B.Then the Wilson system {3 g} ez which can be expressed as
neNg

{(_1)kncn(EnT§ + (_1)k+nE—nT§)g} kez

neNg
is a Wilson Bessel sequence with Bessel bound B.
Proof. For k € Z and n € N, we have
Vi, n8 =CaTeEng +(=1) " TLE_ g
=6_2”i§”CnEnT§g n e—Znig(—n)Cn(_l)k-i—nE_nT%g
=(—1)k”CnEnT§g + (—1)k”+k+”CnE—nT§g

=(—1)""c, (E, Tx + (—1)"™ME_,Ti)g.
2 2

Also, since {E, T« g}, rez is a Gabor Bessel sequence with Bessel bound B, we have
2

D HETeg, f)* < BIfI2, forall f € L2(R)

kezZ
nez

Note that
2 bngn P = 3 KD Te g + (~ 1) "E_, T ), f)
kez keZ
neNg neNg

= D 1D e B Teg, )+ (-1 e (B, Tig, )

keZ
neNy
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1 kl 2
:Z|§(E0T§g,f) +(-1) §<E0T§g’f)|

:GZZ|i(—1)k”<ET y+ e g
- V2 n %g:f /2 -n %g:f

neN

1
<7 D (HETeg, )P + {EoTs g, F)I)
kEZ 2 2

1
5 D (HETeg. )P + [ Teg, f))

ke
neN

Hence,we have

D 1 Wkag, AP < D [ETig, )P <BIFIP, for allf € L3(R).

kez k,nez
neNg

Remark 1. By frame decomposition, we know that if {x,} is a frame in a Hilbert space H
with frame operator S, then x = Y.(x,S 1x,)x,, for all x in H. In case of a Gabor frame
{EmbTha8}mnez in L?(R), we know that

f Z <f,S_1(Emanag)>Emanag

m,n€z

Z (f: EmanaS_1g>Emanag- (4)

m,n€”Z

In the following Theorem we prove that (4) of Remark 1 is partially satisfied by a Wilson
frame.

Theorem 2. Let g € L?(R) and assume that {Yk, ng} xez is a Wilson Bessel sequence with
neNg

frame operator S. Let k' € Z,n" € Ny. If k' +n’ is even, then Sy & =y vSg. Further, if
{Vx, ng} kez is a Wilson frame, then S‘lgbk/, & =Yy +S7lg.

0

Proof Let f € L?(R),and assume that {1} k, n&} k<= is a Wilson Bessel sequence. We have

neNg

S f = D (Wi fr 8 Wing

keZ
neNg

= Z(—l)k " +knCnC:l (En’ Tk_/f: EnT§g>¢k,ng
2

ke
neNg

+ D (DG B Ty fLE - Ts 8)Wing
2

keZ
neNg
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+ D DR e (B Ty L EnTe8)ng
2

keZ
neNg

+ Z (_1)k n’'+k'+n +kn+k+nCnC:l (E—n’ Tk_’f, E—nT§g>'§bk,ng
2

keZ
neNg

Also, we have

DD e (B Ty L En T 8) s
keZ 2
neNg

= > (DN e (B T £, En T g} (= 1) (B, T + (=) "E_, Ti g}
2

ke
neNg

Note that for f € L%(R),
T,Eyf (x) = exp(—2iba)E, T, f (x). (5)

Using commutator relations given in (5) in Theorem 2

Z (_1)k " +kncnc:1(En’ Tk_/f’ EnT§g>¢k,ng
2

keZ

neNg
= Ve, explmi (n - WDE . T 8)E i
k
+ 2D (f exp(amiz (n = n)Eyw Te 8)E- Tig

kezZ
neNg

performing the change of variables n — n+n’,k — k+k’ and using the commutator relations
given in (5) in Theorem 2 again, we obtain

Z (—1)k " +knCnC;<En/ Tk_’f: E, T% g>wk,ng
2

kezZ

neNg
=(—D¥"er (D] 2(f.E nTe8)En Ty §ETig
+ D DG T ) By Ty B Ti )

keZ
neNg

Similarly,

Z (—1)k n +kn+k+nCnC; (En/ Tk_’f, E—nTg g)lpk,ng
2

keZ
neNg
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=¥ (Y alf EonTs 8By Te GE-Tig

keZ
neNg
+ D (1R (f,E_, T g)E_y Ty gE, Tig)
keZ 2 2 2
neNy
and
Z (_1)k/n/+kn+k/+n’cnc:l (E_w Ty f,E, Tk g)lpk,ng
S 2 2
e
=(—= D" el (DK D (f, By Te 8)E_y Ty gE, Teg
keZ 2 2 2
neNg
+ D (DS, B, Ti @) By Ty gE_ T 8)
keZ 2 2 2
neNy
and

Z (—1)k n’+k'+n +k"+k+"ch;(E_n’Tk_’f, E—nng)’wbk,ng
2

kez
neNg
=(~DFIC (D A B Teg)E Ty 8E-Tig
keZ 2 2 2
neNg
+ D (= DC(f B Tig)Ey Ty gE, Ti 8)
keZ 2 2 2
neNg

Finally,we obtain

S f =", D {{f EaTsg)
kez
neNy

EyTygE,Tig + (—D)kn(f, Enng)E—n'Tg 8E_nTs g}
2 2

+ (DK D e {(f E-nTsg)
keZ
neNg

EyTy 8E_yTig +(=1)"™f,E_,Ts g)E_y Ty 8E,Tig}
2 2

+ (=¥, Y (=1, By Ti 8) By T §E_ i g}
2 2 2

keZ
neNg
K'n'+k'+n’ 1 2
+(-1) ¢ D U EaTeg)E_y Ty 8E,Teg
keZ 2
neNg

+ (1S B Te 8) B Ty B, T g}
2
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+ (DK N A fL B T g)E_y Ty §E_, Ti g}
2 2 2

ke
neNg

Also, we have

Sf =D, altf EnTe8)EnTeg + (=)™ (f, E, Ty ) E_, Ti g}

keZ
neNg

+ > (= By Te @B, Tu g + {f, E_ Te ) E_, T g}
2 2 2 2

keZ
neNg

Therefore

wk/,n/sf :(_1)k " C; Z Ci{(f’Enng)En’T%gEnng + (_1)k+n<f, Enng)En’Tk?’gE—nng}

keZ
neNg

+(=DF" e, DAL, E_yTe8)Ey Ty 8E 1 Ti8

keZ
neNg

+ (_1)k+n<f, E—nT§g>En'Tk_/ gEnng}
2

+ (_1)k/n/+k/+n/(:; Z Ci{(f: EnTkg>E—n/ TwgE,Trg
kezZ 2 2 2
neNg

+ (D B Te VB T gE_ Ti g}
2

+(DFHIN S U B Ts )Ew Ty gE_Tig
kezZ 2
neNg

+ (=1 f, B Te@)E_w Ty §EnTi g}
2

Note that if k’ 4+ n’ is an even integerthen Sy vf = Yy Sf for all f € L*(R). Thus

S'labk’,n’ = 1/)k/,n’S'
Further, if {4 ,g} «ez is a Wilson frame, then S is invertible. So, we have

neNy

STISYp STt =Sy wSSTT. Hence, ) (S7'g) =S (Yr i g)

Remark 2. The result in Theorem 2 does not hold if for k' € Z,and n’ € Ny, k' + n’is an odd

integer.
In this case, we have

St f =c, Y 2{{f, EnTig)En Ty §ETs g +(— 1M (f,E, Tx g)E_y T gE_ T g}
2 2

kezZ
neNg

+ C:l Z C,%{(f:E—nTEg>En’Tk_'gE—nTEg + (_1)k+n<f:E—nTEg>E—n’Tk_/gEnTkg}
2 2 2 2 2 2

kezZ
neNg
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¢, 2 (=1 E Ty ) Ey Ty By T 8

keZ

neNg
— b > 2 f L B Tx 8By Ty §E, T g + (1) ™(f, E_, Ti @) Ey Ty QE, Ti g}
keZ 2 2 2 2 2 2
neNgy
2
- C:l gz: Cn{<f,E—nT§g>E—n’Tk_2'gE—nT§g}
neNg

and

Yo Sf =c, Y 2{(f, EnTi8)Ey Ty gE,Tig + (=1 (£, E, Tx g) Ey Ty 8E_, Te g}
2 2

keZ
neNg

+C; Z Ci{(f:E—nT%g>En’Tk_/gE—nT§g + (_1)k+n<f:E—nT§g>En/Tk_/gEnng}
2 2

keZ
neNg

—c Z Cﬁ{(f,Enng)E—n/T%gEnng + (=DM, EnTyg)EwTy 8E-nTeg}

kezZ
neNg

— ¢, > Rf E_ Teg)E_y T §E_, Te g + (1) (f, E_, Tx g)E_y Ty gE, T g}
n n 5 > 2 2 ) 2

kezZ
neNg

Thus, wk’,n’sf # ka’,n’f‘

Remark 3. The canonical dual frame of a frame {x,} with the frame operator S is given by
{S7Y{x,}}. The canonical dual frame of a Gabor frame has a Gabor structure but Theorem 2
and Remark 2 shows that the canonical dual frame for a Wilson frame does not have a Wilson
structure.

Now we give a sufficient condition for the Wilson systems W(g) and W(h) to be dual
Wilson frames. First, we prove a result in the form of a Lemma which will be used in the main
result.

Lemma 1. For f, g in L2(R) let W(g) and W (h) be two Wilson Bessel sequences.W (g) and W (h)
are dual Wilson frames if and only if

1 1
(e.f) =5 DA TE hf) e, TiEng) + 5 D (TeEqh,f){e, TiErg),

k,nez k,n€Z
forall e, f in L?(R)

Proof. If W(g) and W (h) are two Bessel sequences, then they are dual frames if and only
if
(e.f) =D (W(h),f)e.W(g)), foralle, f € L*(R)

keZ
neNg
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S (e f)= D (e euTiEg + (=1 e, T E_g){en TeEh+ (1) ¢, TLE_sh f)
kezZ
neNg

1 1
S (e.f) =5 D, TeEah f){e. TEng) + 5 D (~1)X(TxEoh, f){e, TcEog)

k,nez kez

1
+ 5 D (CDUTLE B, f){e, TeEng) + (=1 (TyEh, f){e, TLE_yg)

keZ
neN

1 1
S (e.f) =5 D (TEf) e TeEg) +5 > (~)"TLE_ i, f)(e, T Eyg)
2 2 2 2 2
k,n€Z k,n€z
Theorem 3. Let g,h € L2(R) and suppose that

() {TEEnh}k,nGZ and {TEEng}k,nGZ be dual frames.
2 2
(b) {(_1)k+nTKE—nh}k,n€Z and {TKEng}k,nGZ be dual frames.
2 2

Then the Wilson systems W(g) and W (h) are dual Wilson frames.

Proof. By hypothesis (a) and (b),

(e.f)= Y (TxExh, f){e, T<Eyg)

k,neZ

and
(e.f)= D ((~1"TLE_.h, f)(e, TcE,g) for all e, f € L2(R)

k,nez

Now using Lemma 1 the result follows.

Remark 4. In view of Theorem 3 and commutator relations in (5) in Theorem 2 a sufficient
condition for two Wilson Bessel sequences W(g) and W (h) to be dual frames in terms of dual
Gabor Bessel sequences is obtained.
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