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Abstract. In this paper Wilson frame as a generalization of Wilson bases has been defined. A sufficent

condition for a Wilson system to be a Wilson Bessel sequence in terms of a Gabor Bessel sequence

has been given. It is shown that the canonical dual frame of a Wilson frame may not have a Wilson

structure.Also,a sufficient condition for two Wilson Bessel sequences to be dual frames has been given

in terms of dual Gabor frames.
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1. Introduction

Gabor systems are time and frequency shifted images of a signal function f , called an

atom. Gabor systems have become a popular tool, both in theory and applications. However,

one drawback in view of Balian-Low Theorem is that it is impossible to construct Gabor bases

for L2(R) having good time-frequency localization [6]. Replacing the frequency-shift (modu-

lation) with multiplication by suitably chosen trigonometric functions, we get a system called

Wilson system which under certain conditions is an orthonormal basis.

Using ideas of Wilson [8, 9], Daubechies, Jaffard and Journe [3] constructed orthonormal

Wilson bases which have good localization properties in time and frequency simultaneously.

In [4], it has been proved that Wilson bases of exponential decay are unconditional bases for

all modulation spaces on R including the classical Bessel potential space and the Schwartz

spaces. Also, Wilson bases are no unconditional bases for the ordinary Lp−spaces for p 6= 2

[4]. Approximation properties of Wilson bases are studied in [1].

Generalizations of Wilson bases to non-rectangular lattices are discussed in [7] with mo-

tivation from wireless communication and cosines modulated filter banks. Modified Wilson

orthonormal bases are studied in [10].

This paper starts with the definition of a Wilson system [5] followed by the definition of a
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Wilson frame.

In this paper, a sufficient condition for a Wilson system to be a Wilson Bessel sequence

in terms of a Gabor Bessel sequence is given.It is shown that the canonical dual frame of a

Wilson frame may not have a Wilson structure.Finally, a sufficient condition for two Wilson

Bessel sequences to be dual frames is given.

2. Preliminaries

Definition 1. A sequence {xn} in a Hilbert space H is said to be a frame for H if there exist

constants A and B with 0< A≤ B <∞ such that

A‖x‖2 ≤
∑

n

|〈x , xn〉|2 ≤ B‖x‖2, x ∈ H (1)

The positive constants A and B, respectively, are called lower and upper frame bounds for

the frame {xn}. The inequality (1) in Definition 1, is called the frame inequality for the frame

{xn}.A sequence {xn} ∈ H is called a Bessel sequence if it satisfies upper frame inequality in

(1) of Definition 1.

Definition 2. For a Bessel sequence {xn} in a Hilbert space H, the frame operator S is defined as

S : H → H such that Sx =
∑〈x , xn〉xn,for all x in H.

Daubechies, Grossmann and Meyer [3] were credited for combining Gabor analysis with

frame theory. They were the first to construct tight frames for L2(R) having the form {EmbTna g}m,n∈Z,
where

Emb : L2(R)→ Ł2(R), (Emb g)(x) = e2πimbx g(x − na)

and

Tna : L2(R)→ Ł2(R), (Tna g)(x) = g(x − na), a > 0, b > 0.

Definition 3. Let g ∈ L2(R) and a, b be positive constants. Then, the sequence

{EmbTna g}m,n∈Z is called a Gabor system for L2(R). Further, {EmbTna g}m,n∈Z is called a Ga-

bor frame for L2(R),if there exist constants A and B with 0< A≤ B <∞ such that

A‖ f ‖2 ≤
∑

n

|〈 f , Emb Tna g〉|2 ≤ B‖ f ‖2, f ∈ L2(R) (2)

The sequence {EmbTna g}m,n∈Z is called a Gabor Bessel sequence for L2(R) if it satisfies the upper

frame inequality in (2) in Definition 3.

For literature related to Gabor frames, one may refer to [2]

Definition 4 ([5]). For g ∈ L2(R), the associated Wilson system W (g) = {ψk,ng} k∈Z
n∈N0

is given

by the functions

ψk, n g = cnT k

2

(En + (−1)k+nE−n)g , k ∈ Z and n ∈ N0,

where c0 =
1

2
, and cn =

1p
2

for n≥ 1 and N0 = N∪ {0}.
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3. Main Results

We begin this section with the definition of a Wilson frame.

Definition 5. The Wilson system W (g) = {ψk, n g} k∈Z
n∈N0

for L2(R) is called a Wilson frame, if

there exist constants A and B with 0< A≤ B <∞ such that

A‖ f ‖2 ≤
∑

k∈Z
n∈N0

|〈 f ,ψk,n g〉|2 ≤ B‖ f ‖2, for all f ∈ L2(R). (3)

The constants A and B are called lower frame bound and upper frame bound respectively

for the Wilson frame W (g).The Wilson system W (g) = {ψk,ng} k∈Z
n∈N0

is called a Wilson Bessel

sequence if it satisfies upper frame inequality in (3) in Definition 5.

In the following result, we give a sufficient condition for a Wilson system to be a Wilson

Bessel sequence in terms of a Gabor Bessel sequence.

Theorem 1. Let g ∈ L2(R).Let {EnT k

2

g}n, k∈Z be a Gabor Bessel sequence with Bessel bound

B.Then the Wilson system {ψk, n g} k∈Z
n∈N0

which can be expressed as

{(−1)kncn(EnT k

2

+ (−1)k+nE−nT k

2

)g} k∈Z
n∈N0

is a Wilson Bessel sequence with Bessel bound B.

Proof. For k ∈ Z and n ∈ N0, we have

ψk, n g =cnT k

2

En g + cn(−1)k+nT k

2

E−n g

=e−2πi k

2
ncnEnT k

2

g + e−2πi k

2
(−n)cn(−1)k+nE−nT k

2

g

=(−1)kncnEnT k

2

g + (−1)kn+k+ncnE−nT k

2

g

=(−1)kncn(EnT k

2

+ (−1)k+nE−nT k

2

)g.

Also, since {EnT k

2

g}n, k∈Z is a Gabor Bessel sequence with Bessel bound B, we have

∑

k∈Z
n∈Z

|〈EnT k

2

g, f 〉|2 ≤ B‖ f ‖2, for all f ∈ L2(R)

Note that

∑

k∈Z
n∈N0

|〈ψk,ng, f 〉|2 =
∑

k∈Z
n∈N0

|〈(−1)kncn(EnT k

2

g + (−1)k+nE−nT k

2

g), f 〉|2

=
∑

k∈Z
n∈N0

|(−1)kncn〈EnT k

2

g, f 〉+ (−1)kn+k+ncn〈E−nT k

2

g, f 〉|2
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=
∑

k∈Z
|1
2
〈E0T k

2

g, f 〉+ (−1)k
1

2
〈E0T k

2

g, f 〉|2

+
∑

k∈Z
n∈N

| 1p
2
(−1)kn〈EnT k

2

g, f 〉+ (−1)kn+k+n

p
2
〈E−nT k

2

g, f 〉|2

≤1

4

∑

k∈Z
(|〈E0T k

2

g, f 〉|2 + |〈E0T k

2

g, f 〉|2)

+
1

2

∑

k∈Z
n∈N

(|〈EnT k

2

g, f 〉|2+ |〈E−nT k

2

g, f 〉|2)

Hence,we have

∑

k∈Z
n∈N0

|〈ψk,ng, f 〉|2 ≤
∑

k,n∈Z
|〈EnT k

2

g, f 〉|2 ≤ B‖ f ‖2, for all f ∈ L2(R).

Remark 1. By frame decomposition, we know that if {xn} is a frame in a Hilbert space H

with frame operator S, then x =
∑〈x ,S−1 xn〉xn, for all x in H. In case of a Gabor frame

{EmbTna g}m,n∈Z in L2(R), we know that

f =
∑

m,n∈Z
〈 f ,S−1(EmbTna g)〉EmbTna g

=
∑

m,n∈Z
〈 f , Emb TnaS−1 g〉EmbTna g. (4)

In the following Theorem we prove that (4) of Remark 1 is partially satisfied by a Wilson

frame.

Theorem 2. Let g ∈ L2(R) and assume that {ψk, n g} k∈Z
n∈N0

is a Wilson Bessel sequence with

frame operator S. Let k′ ∈ Z, n′ ∈ N0. If k′ + n′ is even, then Sψk′, n′ g = ψk′, n′Sg. Further, if

{ψk, n g} k∈Z
n∈N0

is a Wilson frame, then S−1ψk′, n′ g =ψk′, n′S
−1 g.

Proof. Let f ∈ L2(R),and assume that {ψk, n g} k∈Z
n∈N0

is a Wilson Bessel sequence. We have

Sψk′,n′ f =
∑

k∈Z
n∈N0

〈ψk′,n′ f ,ψk,n g〉ψk,ng

=
∑

k∈Z
n∈N0

(−1)k
′n′+kncnc′n〈En′T k′

2

f , EnT k

2

g〉ψk,n g

+
∑

k∈Z
n∈N0

(−1)k
′n′+kn+k+ncnc′n〈En′T k′

2

f , E−nT k

2

g〉ψk,ng
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+
∑

k∈Z
n∈N0

(−1)k
′n′+kn+k′+n′cnc′n〈E−n′T k′

2

f , EnT k

2

g〉ψk,ng

+
∑

k∈Z
n∈N0

(−1)k
′n′+k′+n′+kn+k+ncnc′n〈E−n′T k′

2

f , E−nT k

2

g〉ψk,n g

Also, we have
∑

k∈Z
n∈N0

(−1)k
′n′+kncnc′n〈En′T k′

2

f , EnT k

2

g〉ψk,ng

=
∑

k∈Z
n∈N0

(−1)k
′n′+kncnc′n〈En′T k′

2

f , EnT k

2

g〉{(−1)kncn(EnT k

2

+ (−1)k+nE−nT k

2

)g}

Note that for f ∈ L2(R),

TaEb f (x) = exp(−2πi ba)EbTa f (x). (5)

Using commutator relations given in (5) in Theorem 2

∑

k∈Z
n∈N0

(−1)k
′n′+kncnc′n〈En′T k′

2

f , EnT k

2

g〉ψk,n g

=
∑

k∈Z
n∈N0

(−1)k
′n′c2

nc′n〈 f , exp(2πi
k

2
(n− n′))En−n′T k−k′

2

g〉EnT k

2

g

+
∑

k∈Z
n∈N0

(−1)k
′n′+k+nc2

nc′n〈 f , exp(2πi
k

2
(n− n′))En−n′T k−k′

2

g〉E−nT k

2

g

performing the change of variables n→ n+n′, k→ k+ k′ and using the commutator relations

given in (5) in Theorem 2 again, we obtain

∑

k∈Z
n∈N0

(−1)k
′n′+kncnc′n〈En′T k′

2

f , EnT k

2

g〉ψk,n g

=(−1)k
′n′ c′n(
∑

k∈Z
n∈N0

c2
n〈 f , EnT k

2

g〉En′T k′
2

gEnT k

2

g

+
∑

k∈Z
n∈N0

(−1)k+nc2
n〈 f , EnT k

2

g〉E−n′T k′
2

gE−nT k

2

g)

Similarly,

∑

k∈Z
n∈N0

(−1)k
′n′+kn+k+ncnc′n〈En′T k′

2

f , E−nT k

2

g〉ψk,ng
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=(−1)k
′n′ c′n(
∑

k∈Z
n∈N0

c2
n〈 f , E−nT k

2

g〉En′T k′
2

gE−nT k

2

g

+
∑

k∈Z
n∈N0

(−1)k+nc2
n〈 f , E−nT k

2

g〉E−n′T k′
2

gEnT k

2

g)

and
∑

k∈Z
n∈N0

(−1)k
′n′+kn+k′+n′ cnc′n〈E−n′T k′

2

f , EnT k

2

g〉ψk,n g

=(−1)k
′n′c′n((−1)k

′+n′
∑

k∈Z
n∈N0

c2
n〈 f , EnT k

2

g〉E−n′T k′
2

gEnT k

2

g

+
∑

k∈Z
n∈N0

(−1)k+nc2
n〈 f , EnT k

2

g〉En′T k′
2

gE−nT k

2

g)

and
∑

k∈Z
n∈N0

(−1)k
′n′+k′+n′+kn+k+ncnc′n〈E−n′T k′

2

f , E−nT k

2

g〉ψk,n g

=(−1)k
′n′+k′+n′ c′n(
∑

k∈Z
n∈N0

c2
n〈 f , E−nT k

2

g〉E−n′T k′
2

gE−nT k

2

g

+
∑

k∈Z
n∈N0

(−1)k+nc2
n〈 f , E−nT k

2

g〉En′T k′
2

gEnT k

2

g)

Finally,we obtain

Sψk′,n′ f =(−1)k
′n′c′n
∑

k∈Z
n∈N0

c2
n

�〈 f , EnT k

2

g〉

En′T k′
2

gEnT k

2

g + (−1)k+n〈 f , EnT k

2

g〉E−n′T k′
2

gE−nT k

2

g
	

+ (−1)k
′n′c′n
∑

k∈Z
n∈N0

c2
n

�〈 f , E−nT k

2

g〉

En′T k′
2

gE−nT k

2

g + (−1)k+n〈 f , E−nT k

2

g〉E−n′T k′
2

gEnT k

2

g
	

+ (−1)k
′n′c′n
∑

k∈Z
n∈N0

c2
n{(−1)k+n〈 f , EnT k

2

g〉En′T k′
2

gE−nT k

2

g}

+ (−1)k
′n′+k′+n′c′n
∑

k∈Z
n∈N0

c2
n

�〈 f , EnT k

2

g〉E−n′T k′
2

gEnT k

2

g

+ (−1)k+n〈 f , E−nT k

2

g〉En′T k′
2

gEnT k

2

g
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+ (−1)k
′n′+k′+n′c′n
∑

k∈Z
n∈N0

c2
n{〈 f , E−nT k

2

g〉E−n′T k′
2

gE−nT k

2

g}

Also, we have

S f =
∑

k∈Z
n∈N0

c2
n{〈 f , EnT k

2

g〉EnT k

2

g + (−1)k+n〈 f , EnT k

2

g〉E−nT k

2

g}

+
∑

k∈Z
n∈N0

c2
n{(−1)k+n〈 f , E−nT k

2

g〉EnT k

2

g + 〈 f , E−nT k

2

g〉E−nT k

2

g}

Therefore

ψk′,n′S f =(−1)k
′n′c′n
∑

k∈Z
n∈N0

c2
n{〈 f , EnT k

2

g〉En′T k′
2

gEnT k

2

g + (−1)k+n〈 f , EnT k

2

g〉En′T k′
2

gE−nT k

2

g}

+ (−1)k
′n′c′n
∑

k∈Z
n∈N0

c2
n

�〈 f , E−nT k

2

g〉En′T k′
2

gE−nT k

2

g

+ (−1)k+n〈 f , E−nT k

2

g〉En′T k′
2

gEnT k

2

g
	

+ (−1)k
′n′+k′+n′c′n
∑

k∈Z
n∈N0

c2
n

�〈 f , EnT k

2

g〉E−n′T k′
2

gEnT k

2

g

+ (−1)k+n〈 f , EnT k

2

g〉E−n′T k′
2

gE−nT k

2

g
	

+ (−1)k
′n′+k′+n′c′n
∑

k∈Z
n∈N0

c2
n

�〈 f , E−nT k

2

g〉E−n′T k′
2

gE−nT k

2

g

+ (−1)k+n〈 f , E−nT k

2

g〉E−n′T k′
2

gEnT k

2

g
	

Note that if k′ + n′ is an even integer,then Sψk′,n′ f = ψk′,n′S f for all f ∈ L2(R). Thus

Sψk′,n′ =ψk′,n′S.

Further, if {ψk, n g} k∈Z
n∈N0

is a Wilson frame, then S is invertible. So, we have

S−1Sψk′,n′S
−1 = S−1ψk′,n′SS−1. Hence,ψk′,n′(S

−1 g) = S−1(ψk′,n′ g)

Remark 2. The result in Theorem 2 does not hold if for k′ ∈ Z,and n′ ∈ N0,k′ + n′is an odd

integer.

In this case, we have

Sψk′,n′ f =c′n
∑

k∈Z
n∈N0

c2
n{〈 f , EnT k

2

g〉En′T k′
2

gEnT k

2

g + (−1)k+n〈 f , EnT k

2

g〉E−n′T k′
2

gE−nT k

2

g}

+ c′n
∑

k∈Z
n∈N0

c2
n{〈 f , E−n T k

2

g〉En′T k′
2

gE−nT k

2

g + (−1)k+n〈 f , E−nT k

2

g〉E−n′T k′
2

gEnT k

2

g}
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+ c′n
∑

k∈Z
n∈N0

c2
n{(−1)k+n〈 f , EnT k

2

g〉En′T k′
2

gE−nT k

2

g}

− c′n
∑

k∈Z
n∈N0

c2
n{〈 f , EnT k

2

g〉E−n′T k′
2

gEnT k

2

g + (−1)k+n〈 f , E−nT k

2

g〉En′T k′
2

gEnT k

2

g}

− c′n
∑

k∈Z
n∈N0

c2
n{〈 f , E−n T k

2

g〉E−n′T k′
2

gE−nT k

2

g}

and

ψk′,n′S f =c′n
∑

k∈Z
n∈N0

c2
n{〈 f , EnT k

2

g〉En′T k′
2

gEnT k

2

g + (−1)k+n〈 f , EnT k

2

g〉En′T k′
2

gE−nT k

2

g}

+ c′n
∑

k∈Z
n∈N0

c2
n{〈 f , E−n T k

2

g〉En′T k′
2

gE−nT k

2

g + (−1)k+n〈 f , E−nT k

2

g〉En′T k′
2

gEnT k

2

g}

− c′n
∑

k∈Z
n∈N0

c2
n{〈 f , EnT k

2

g〉E−n′T k′
2

gEnT k

2

g + (−1)k+n〈 f , EnT k

2

g〉E−n′T k′
2

gE−nT k

2

g}

− c′n
∑

k∈Z
n∈N0

c2
n{〈 f , E−n T k

2

g〉E−n′T k′
2

gE−nT k

2

g + (−1)k+n〈 f , E−nT k

2

g〉E−n′T k′
2

gEnT k

2

g}

Thus, ψk′,n′S f 6= Sψk′,n′ f .

Remark 3. The canonical dual frame of a frame {xn} with the frame operator S is given by

{S−1{xn}}. The canonical dual frame of a Gabor frame has a Gabor structure but Theorem 2

and Remark 2 shows that the canonical dual frame for a Wilson frame does not have a Wilson

structure.

Now we give a sufficient condition for the Wilson systems W (g) and W (h) to be dual

Wilson frames. First, we prove a result in the form of a Lemma which will be used in the main

result.

Lemma 1. For f , g in L2(R) let W (g) and W (h) be two Wilson Bessel sequences.W (g) and W (h)

are dual Wilson frames if and only if

〈e, f 〉 = 1

2

∑

k,n∈Z
〈(−1)k+nT k

2

E−nh, f 〉〈e, T k

2

En g〉+ 1

2

∑

k,n∈Z
〈T k

2

Enh, f 〉〈e, T k

2

En g〉,

for all e, f in L2(R)

Proof. If W (g) and W (h) are two Bessel sequences, then they are dual frames if and only

if

〈e, f 〉=
∑

k∈Z
n∈N0

〈W (h), f 〉〈e,W (g)〉, for all e, f ∈ L2(R)



REFERENCES 25

⇔〈e, f 〉 =
∑

k∈Z
n∈N0

〈e, cnT k

2

En g + (−1)k+ncnT k

2

E−n g〉〈cnT k

2

Enh+ (−1)k+ncnT k

2

E−nh, f 〉

⇔ 〈e, f 〉 =1

2

∑

k,n∈Z
〈T k

2

Enh, f 〉〈e, T k

2

En g〉+ 1

2

∑

k∈Z
(−1)k〈T k

2

E0h, f 〉〈e, T k

2

E0 g〉

+
1

2

∑

k∈Z
n∈N

(−1)k+n〈T k

2

E−nh, f 〉〈e, T k

2

En g〉+ (−1)k−n〈T k

2

Enh, f 〉〈e, T k

2

E−n g〉

⇔ 〈e, f 〉= 1

2

∑

k,n∈Z
〈T k

2

Enh, f 〉〈e, T k

2

En g〉+ 1

2

∑

k,n∈Z
〈(−1)k+nT k

2

E−nh, f 〉〈e, T k

2

En g〉

Theorem 3. Let g,h ∈ L2(R) and suppose that

(a) {T k

2

Enh}k,n∈Z and {T k

2

En g}k,n∈Z be dual frames.

(b) {(−1)k+nT k

2

E−nh}k,n∈Z and {T k

2

En g}k,n∈Z be dual frames.

Then the Wilson systems W (g) and W (h) are dual Wilson frames.

Proof. By hypothesis (a) and (b),

〈e, f 〉=
∑

k,n∈Z
〈T k

2

Enh, f 〉〈e, T k

2

En g〉

and

〈e, f 〉 =
∑

k,n∈Z
〈(−1)k+nT k

2

E−nh, f 〉〈e, T k

2

En g〉 for all e, f ∈ L2(R)

Now using Lemma 1 the result follows.

Remark 4. In view of Theorem 3 and commutator relations in (5) in Theorem 2 a sufficient

condition for two Wilson Bessel sequences W (g) and W (h) to be dual frames in terms of dual

Gabor Bessel sequences is obtained.
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