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Abstract. In this paper, we show that if f and h are two transcendental entire functions which are
semiconjugated by an entire map g, where f has no Siegel disk and no Baker domain, then
§(F(f)) cF(h).
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1. Introduction

Let f be a non-constant entire function and let f", n € N, denote the nth iterate of f. The
set of normality F(f) is defined to be the set of points z € C, such that the sequence {f"} is
normal in some neighbourhood of z, and J =J(f) = C\ F(f). F(f) and J(f) are called the
Fatou set and the Julia set of f, respectively. These sets play a fundamental role in complex
dynamics, (see [2, 5, 7, 9]) for an introduction to this theory. It is well known that F(f) is
open (which may be empty) and J(f) is closed. Let f and h be two entire functions and let
g : C — C be a non-constant continuous function such that

gof:hog, @)

Then we say that f and h are semiconjugated by g and we call g a semiconjugacy [4]. Further,
if f =h, then (1) reduces to go f = f o g and in this case we say that f and g are permutable
entire functions. If U is a component of F(f), then f(U) lies in some component V of F(f).
In fact, V \ f(U) is either empty or a single point [6]. By a slight abuse of language, we write
V = f(U) even when V' \ f (U) is a singleton. If all f"(U) with n € N are different components
of F(f), then U is called a wandering domain.

The behaviour of f" in the periodic component is fairly well understood. In fact, if U is a
periodic component of period p, then we have one of the following five possibilities [3].
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i) U is an immediate attractive basin of z,: U contains an attracting periodic point z, of
period p and f"P(z) — 23 as n — oo for every z € U.

ii) U is a Leau domain: JdU contains a periodic point z, of period p and f™(z) — z, as
n — oo for all z € U. Further, (f?)(z,) =1, if 2y, € C and if z, = oo, then (g?)'(0) =1,
where g(z) = 1/f(%).

iii) U is a Siegel disk: There exists an analytic homeomorphism ¢ : U — D, where D is
the unit disk such that p{fP[¢ " }(2)]} = ™%z for some a € R\ Q.

iv) U is a Herman ring: There exists an analytic homeomorphism ¢ : U — A, where A is
the annulus A = {z : 1 < |z| < r},r > 1 such that p{fP[¢}(2)]} = €2>™*z for some
aeR\Q.

v) U is a Baker domain: There exists 2, € dU, such that f"P(z) — 2, as n — oo for all
z € U, but fP(gy) is not defined. In 1984, [1] Baker proved that if f, g are two
permutable entire functions with
f = g +K, where K is some constant, then J(f) = J(g). In this paper, we prove that if
f and h are two entire maps which are semiconjugated by an entire map g, where f has
no Siegel disk and no Baker domain and f and g satisfy one of the following conditions

(a) there exist a non-constant polynomial p and an entire map k such that
p(f (z)) = k(g(2));

(b) f =g+ K, where K is some constant, K # 0;

(c) f = gK, where K is some constant, K # 1, and K > 1/e,

then g(F(f)) € F(h).

2. Main Results and Their Proofs

Theorem 1. Let f and h be two transcendental entire maps semiconjugated by an entire map g,
where f has no Siegel disk and no Baker domain. If there exist a non-constant polynomial p and
an entire map k such that

p(f(2)) = k(g(2)),

then

g(F(f)) cF(h).

Theorem 2. Let f and h be two transcendental entire maps which are semiconjugated by an
entire map g, where f has no Siegel disk and no Baker domain, and if f = g + K, where K is
some constant, K # 0, then g(F(f)) c F(h).

Theorem 3. Let f and h be two transcendental entire maps which are semiconjugated by an
entire map g, where f has no Siegel disk and no Baker domain, and if f = gK, where K is some
constant # 1, and K > 1/e, then g(F(f)) c F(h).
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In order to prove the main results, we need the following lemmas.

Lemma 1. Suppose that W is a wandering domain of a transcendental entire function f. Then
for any compact subset 2 of W, diam[f"(22)] — 0 as n — oo.

Proof. The proof follows on same lines as the proof of Lemma 8.2.2 in [2]. For complete-
ness, we include it here. Suppose that the result is false. Then there is some compact set K of
W, some 6 > 0, some increasing sequence n; of positive integers such that for j = 1,2,---,
we have that diam[f"(Q2)] > e. As f" is normal in W, there is a subsequence of f" which
converges locally uniformly on W to some analytic function g. For convenience, we relabel
this subsequence and so assume that " itself has this property. If g is constant, with value
a say, on W, then f™ converges uniformly to a on K and so for large j, f™ lies in an ¢/3-
neighbourhood of a. This contradicts the fact that diam[ f"(€2)] > ¢. Thus we conclude that
f™ converges to a non-constant g locally uniformly on W. Now take a point ¢ in W such that
g’({) # 0 and draw a small circle C with centre { such that its interior D lies in W, and which
is such that g(z) # g({), where z is on C. Then for j > j, say,

f" —g(2)l < inf |g(w) — g(O)] <lg(z) — g (Ol

on C, so by Rouche’s Theorem, f" (D) contains a point g({). A contradiction to the fact that
W is a wandering domain. This completes the proof.

Lemma 2 ([1]). If a € J(f), if N is an open neighbourhood of a, and if Q is a compact set which
does not contain a Fatou-exceptional point of f, then there exists ny such that f™"(N) D Q for all
n > ny,.

Lemma 3. Let f and h be two transcendental entire functions, where f has no Siegel disk and
no Baker domain and let g be a continuous and open map such that go f = ho g, then if there
is a subsequence f™, with n, — oo which has a finite limit, say & in the component U of F(f)
which contains a, then g(a) € F(h).

Proof. Suppose g(a) € F(h). Then g(a) € J(h). Let a € F(f). Then there exists an open
neighbourhood U of a such that U € F(f). Since f™ has a finite limit function, say £ in U
such that all f™(U) lie in a single compact set, say K, on which g is uniformly continuous.
Now by Lemma 1, we have g(f™(U)) = h"™x(g(U)) has small diameter for all large n;. Again
g(a) € J(h) and g(K,) is a compact set, which does not contains Fatou exceptional point of h,
then by Lemma 2, there exists n, such that for n > ny,

h"(g(U)) > g(Ko)-

Now
h(g(U)) = g(f™(U)). (2)

Choose a non-Fatou exceptional value 1 & g(K,). Then for any point 6 € U,
g(6) € g(U) and h™'(g(6)) = n, where ny is fixed. Thus f™(6) € f™ (U) C K,, and so

g(f™(8)) c g(Ko),
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which implies that g(f"'(8)) # 7, a contradiction to (2). Hence g(a) € F(h).

Proof. [Theorem 1] Let a € F(f). Then there exists a neighbourhood U of a such that

U c F(f). By Lemma 3, we only need to consider the case f™ — oo in U. Let M = |rnlax |k(w)].
w|=1

Since p is a non-constant polynomial, there exist a positive constant K such that |p(z)| > M +1
when |z| > K. Since f" — oo in U as n — oo, there exists n, such that for n > ny and z € U,
(=)l >K.

Thus |f(z)| > K for every z € f™(U) (n > ngy). Now if g(a) & F(h), then for arbitrary large n,
by expanding properties of Julia sets [see 8, p. 75], the sequence {h"} takes all values in g(U)
with at most one exception. Thus there exists t = g(&), & € U, such that for some m > ny,

1> [n"(6)| = [n"(g(E)] = [g(f™(EDI.

Thus 6 = f™(§) € f™(U), and so |f(6)| > K, and |g(6)| < 1. Hence
M+1 < |p(f(8))| = |k(g(8))| < M, which is a contradiction. Thus we have that g(a) € F(h).
Hence g(F(f)) c F(h).

Proof [Theorem 2] Let a € F(f), and a neighbourhood U of a such that U < F(f). Then
by Lemma 3, we only need to consider the case f™ — oo in U. Take a constant A such that
A > |K| + 1. There exists ny such that |[f"| > A in U for n > ng, and hence |f"| > A for
z € f(U),n > ny. To complete the proof, let g(a) & F(h). Then for arbitrary large n, the
sequence {h"} takes all values in g(U) with atmost one exception [see 8, p. 75]. Therefore,
there exists t = g(&),; & € U, such that for some m > ny,

1> ["(0)] = [n"(g(ED] = g (F (DI,

which implies that |g(f™(&))| < 1. Thus n = f™(&) € f™(U) and
lg(n)] = 1g(f™(&))| < 1. Since [f™(&)| > Afor all £ € U and for all n > ngy, and so |f(n)| =
IfFFMEN] = If ™1 (&) > Afor & € U. Also

IKI=1f(m)—g@|>If(m)|-lgln)|>A-1,

a contradiction for A > |K| + 1.

Thus we have that g(a) € F(h). Hence g(F(f)) € F(h). Next example illustrates that there
exist transcendental entire maps f, g and h such that f # h and satisfying the conditions in
Theorem 2.

Example 1. Let f(z) = e* + K, K > 0, g(2) = ¢ and h(z) = e**X. Then f(z) = g(z) + K and
(gof)(z) =(hog)(z). Also f(z) =e*+K # h(z).

Proof [Theorem 3] Take a € F(f), and a neighbourhood U of a such that U c F(f). Then
by Lemma 3, we shall consider only the case when f™ — oo in U. Take a constant A such that
A > |K|. Then there exist n, such that for n > n,|f"| > A holds in U, and hence |f (z)| > A for
z € f(U),(n > ny). To complete the proof, let g(a) & F(h). Then by expanding properties of
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Julia sets [see 8, p. 75] for arbitrary large n, the sequence {h"} takes all values in g(U), with
atmost one exception. Therefore, there exist t = g(&), & € U, such that for some m > ny,

1> ["(0)] = [""(g(EN] = g (F (DI,

and so |g(f™(&))| < 1 Thus n = f™(n) € f™(U) and |g(n)| = [g(f™(&))| < 1. Also, since
|f"| >Ain U for n > n,, and so

FI=IfFmENI= 1™ (&) >Afor g€ U.

Now |f(n)| > A, and so |[Kg(n)| > A for n € f™(U), which implies that |g(n)| > A/K. Thus
A/K < |g(n)| < 1, a contradiction for A > |K|. Thus we have that g(a) € F(h). Hence
g(F(f)) c F(h). Again we provide an example which illustrates that there exist transcenden-
tal entire maps f, g and h such that f # h and satisfying the conditions in Theorem 3.

Example 2. Let f(2) = Ke?, g(z) = e® and h(z) = eX* (K # 1), and K > 1/e be three transcen-
dental entire functions. Clearly, f(z)# h(z) and go f =hog.
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