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Abstract. In this paper, we obtain the necessary and sufficient conditions on a ring R, a multi-
plicative set S ⊆ R, and an R-module M such that the polynomial module, the Laurent polynomial
module, the power series module, and the Laurent series module are S-Noetherian. Furthermore,
we also obtain the sufficient conditions for these modules to be S[X]-Noetherian, S[X,X−1]-
Noetherian, S[[X]]-Noetherian, and S[[X,X−1]]-Noetherian, respectively.
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1. Introduction

The Noetherian concept plays an important role in Algebra, especially ring theory
and modules. One of the well-known properties in Noetherian ring concept is Hilbert’s
Basis Theorem, which is a sufficient condition for the polynomial ring to be Noetherian.
Varadarajan [5] generalizes the Hilbert Basis Theorem to determine the necessary and
sufficient conditions for the polynomial module, the Laurent polynomial module and the
power series module to be Noetherian modules.

Anderson and Dumitrescu [1] generalize the concept of Noetherian rings by involving a
multiplicatively closed subset of the ring. Moreover, they also determine the sufficient con-
ditions for the polynomial ring R[X] and the power series ring R[[X]] to be S-Noetherian
rings, where S is a multiplicative subset of the ring R. On the other hand, Zhongkui
[6] provides the sufficient conditions for the Laurent series ring R[[X,X−1]] to be an S-
Noetherian ring. Furthermore, Baeck et al. [2] give the sufficient conditions for the Laurent
polynomial ring R[X,X−1] to be an S-Noetherian ring.
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In this paper we study the necessary and sufficient conditions for R[X]-module M [X],
R[X,X−1]-moduleM [X,X−1], R[[X]]-moduleM [[X]], andR[[X,X−1]]-moduleM [[X,X−1]]
to be S-Noetherian modules. Furthermore, we also determine the sufficient conditions
for these modules to be S[X]-Noetherian, S[X,X−1]-Noetherian, S[[X]]-Noetherian, and
S[[X,X−1]]-Noetherian, respectively.

In Section 2, we will review some definition and properties about S-Noetherian rings
follow from [1]. Beside that, we also give the structure of M [X], M [X,X−1], M [[X]], and
M [[X,X−1]] follow from [5].

As the main results, in Section 3, we give the necessary and sufficient conditions for
the polynomial module to be an S-Noetherian module, list in Theorem 1 and Theorem
3. In similar ways, we also obtain the necessary and sufficient conditions for the Laurent
polynomial module, the power series module, and the Laurent series module to be S-
Noetherian module, list in Theorem 2, Theorem 4, Theorem 5, and Theorem 6. At the end
of Section 3, we give the sufficient conditions for these all modules to be S[X]-Noetherian,
S[X,X−1]-Noetherian, S[[X]]-Noetherian, and S[[X,X−1]]-Noetherian, respectively, list
in Theorem 7 and Theorem 8.

2. Preliminaries

In this section, we review some theory about S-Noetherian rings and modules, and the
structure of the polynomial module M [X], the Laurent polynomial module M [X,X−1],
the power series module M [[X]], and the Laurent series module M [[X,X−1]], following [1]
and [5].

2.1. S-Noetherian Rings and Modules

According to [1], a ring R is called S-Noetherian if each ideal of R is S-finite, i.e., if
SI ⊆ J ⊆ I for some finitely generated ideal J of R and some s ∈ S. An R-module M
is called S-Noetherian if each submodule of M is an S-finite module, i.e., if sN ⊆ F for
some finitely generated submodule F of M and some s ∈ S. A multiplicative set S of a
ring R is anti-Archimedean if

⋂
n≥1 s

nR ∩ S 6= ∅, for every s ∈ S.
The sufficient conditions for R[X] and R[[X]] to be S-Noetherian are given by the

following propositions.

Proposition 1. [1] Let R be a ring and S ⊆ R an anti-Archimedean multiplicative set.
If R is S-Noetherian, then so is the polynomial ring R[X1, ..., Xn].

Proposition 2. [1] Let R be a ring and S ⊆ R an anti-Archimedean multiplicative set
of R consisting of nonzerodivisors. If R is S-Noetherian, then so is the power series ring
R[[X1, ..., Xn]].

Furthermore, the sufficient conditions forR[X,X−1] andR[[X,X−1]] to be S-Noetherian
are given by the following propositions.

Proposition 3. [2] Let S be an anti-Archimedean multiplicative subset of a ring R. If R
is S-Noetherian, then so is the Laurent polynomial ring R[X,X−1].
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Proposition 4. [6] Let R be a ring and S ⊆ R an anti-Archimedean multiplicative set
of R consisting nonzerodivisors. If R is S-Noetherian, then so is the Laurent series ring
R[[X,X−1]].

Baeck et al. [2] also give some properties of an S-Noetherian R-module M as given by
the following Lemmas.

Lemma 1. [2] Let R be a ring, S a multiplicative subset of R, and M an R-module. Then
the following assertions hold.

(1) If M is S-Noetherian and N is a submodule of M , then M/N is S-Noetherian.

(2) If N is a S-Noetherian submodule of M such that M/N is S-Noetherian, then M is
S-Noetherian.

(3) If R is S-Noetherian and M is finitely generated, then M is S-Noetherian.

Lemma 2. [2] If S1 ⊆ S2 are multiplicative subsets of ring R, then S1-Noetherian R-
module is an S2-Noetherian R-module.

2.2. The Structure of M [X], M [X,X−1], M [[X]], and M [[X,X−1]]

Let R[X] be a polynomial ring and M [X] = {
∑l

j=0mjx
j |l ∈ N ∪ {0},mj ∈ M}.

For any
∑k

i=0 rix
i ∈ R[X] and

∑l
j=0mjx

j ∈ M [X], M [X] acquires the structure of an
R[X]-module with pointwise addition and scalar multiplication defined by

(
k∑
i=0

rix
i)(

l∑
j=0

mjx
j) =

k+l∑
µ=0

cµx
µ,

where cµ =
∑

i+j=µ rimj . Next, M [X] is called the polynomial module.

Let R[X,X−1] be the Laurent polynomial ring and M [X,X−1] = {
∑l

j=−umjx
j |l, j ∈

N ∪ {0}},mj ∈ M}. For any
∑k

i=−v rix
i ∈ R[X,X−1] and

∑l
j=−umjx

j ∈ M [X,X−1],

M [X,X−1] acquires the structure of an R[X,X−1]-module with pointwise addition and
scalar multiplication defined by

(
k∑

i=−v
rix

i)(
l∑

j=−u
mjx

j) =
k+l∑

µ=−(v+u)

cµx
µ,

where cµ =
∑

i+j=µ rimj . Next, M [X,X−1] is called the Laurent polynomial module.

Let R[[X]] be the power series ring and M [[X]] = {
∑

j≥0mjx
j |j ∈ N ∪ {0},mj ∈M}.

For any
∑

i≥0 rix
i ∈ R[[X]] and

∑
j≥0mjx

j ∈ M [[X]], M [[X]] acquires the structure of
an R[[X]]-module with pointwise addition and scalar multiplication defined by

(
∑
i≥0

rix
i)(

∑
j≥0

mjx
j) =

∑
k≥0

ckx
k,
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where ck =
∑

i+j=k rimj . Next, M [[X]] is called the power series module.

Let R[[X,X−1]] be the Laurent series ring and M [[X,X−1]] = {
∑

jmjx
j |j ∈ Z,mj ∈

M}. For any
∑

i rix
i ∈ R[[X,X−1]] and

∑
jmjx

j ∈ M [[X,X−1]], M [[X,X−1]] acquires
the structure of anR[[X]]-module with pointwise addition and scalar multiplication defined
by

(
∑
i

rix
i)(

∑
j

mjx
j) =

∑
k

ckx
k,

where ck =
∑

i+j=k rimj . Next, M [[X,X−1]] is called Laurent Series Module.

3. Main Results

In this section we provide the necessary and sufficient conditions for M [X], M [X,X−1],
M [[X]], and M [[X,X−1]] to be S-Noetherian modules. Besides that, we also obtain the
sufficient conditions for M [X] (resp. M [X,X−1], M [[X]], and M [[X,X−1]]) to be S[X]-
Noetherian (resp. S[X,X−1]-Noetherian, S[[X]]-Noetherian, and S[[X,X−1]]-Noetherian).

For any ring R, we denoted R⊕ · · · ⊕R (n factor), for some n ≥ 1, by
⊕
R(n).

Lemma 3. M is finitely generated R-module if and only if it is isomorphic to a quotient
of

⊕
R(n) for some n > 0.

Proof. Let M be a finitely generated R-module and m1, ...,mn ∈M generates M . We
define a morphism

f :
⊕

R(n) →M

(r1, ..., rn) 7→ r1m1 + · · ·+ rnmn.

Since, for any (r1, ..., rn), (t1, ..., tn) ∈
⊕
R(n) and r ∈ R,

f((r1, ..., rn) + (t1, ..., tn)) = f((r1, ..., rn)) + f((t1, ..., tn))

and
f(r(r1, ..., rn)) = rf((r1, ..., rn)),

f is a R-module homomorphism. Since, for any m ∈ M , there exist (r1, ..., rn) ∈
⊕
R(n)

such that f((r1, ..., rn)) = r1m1 + · · · + rnmn, then f is a epimorphism. Therefore,
im(f) = M . Then, by Fundamental Isomorphism Theorem of Modules, we get M ∼=⊕
R(n)/Ker(f).
Next, we assume M ∼=

⊕
R(n)/K, for some submodule K ⊆

⊕
R(n). Image of any gen-

erating set of
⊕
R(n) in M , is generates M . Therefore, M is finitely generated. �

The following lemma shows that, If K is any submodule of R-modul M , then K[X] is
submodule of R[X]-modul M [X]. For the next following, K ≤M means K is a submodule
of M .
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Lemma 4. Let M be an R-module and M [X] an R[X]-module. If K ≤M , then K[X] ≤
M [X].

Proof. Let K is a submodule of M , then rt+ su ∈ K, for every r, s ∈ K and t, u ∈M .
For any k =

∑p
i=0 rix

i, l =
∑p

i=0 six
i ∈ K[X] and m =

∑q
j=0 tjx

j , n =
∑q

j=0 ujx
j ∈

M [X], we get

km+ ln = (

p∑
i=0

rix
i)(

q∑
j=0

tjx
j) + (

p∑
i=0

six
i)(

q∑
j=0

ujx
j)

=

p+q∑
α=0

(
∑
i+j=α

ritj)x
α +

p+q∑
α=0

(
∑
i+j=α

siuj)x
α

=

p+q∑
α=0

(
∑
i+j=α

(ritj + siuj))x
α =

p+q∑
α=0

wαx
α,

where wα =
∑

i+j=α(ritj + siuj).
Since K is a submodule of M , wα ∈ K[X]. Therefore, km + ln ∈ K[X]. So, K[X] ≤

M [X]. �

In a similar way on Lemma 4, we obtain the following properties.

Lemma 5. Let M be an R-module. If K ≤M , then:

(1) K[X,X−1] ≤M [X,X−1]

(2) K[[X]] ≤M [[X]]

(3) K[[X,X−1]] ≤M [[X,X−1]]

The following proposition shows that the polynomial ring over a quotient ring is iso-
morphic to a quotient ring of the polynomial ring.

Proposition 5. Let M be an R-module and M [X] be an R[X]-module. If N ≤ M , then
(M/N)[X] ∼= M [X]/N [X].

Proof. Define a map ϕ : M [X]→ (M/N)[X], by

f = m0 +m1x+ · · ·+mnx
n 7→ f = m0 +m1x+ · · ·+mnx

n,

where mi = mi +N , for i = 0, 1, 2, ..., n.
For any f = m0 + m1x + · · · + mnx

n ∈ (M/N)[X], there exist f = m0 + m1x +
· · · + mnx

n ∈ M [X] such that ϕ(f) = f . Then ϕ is surjective. Therefore, Im(ϕ) =
(M/N)[X]. Next, if ϕ(f) = 0, then f = 0. Therefore, mi ∈ N , for i = 0, 1, 2, ..., n. So,
Ker(ϕ) = N [X]. Hence, based on the fundamental isomorphism theorem of modules, we
getM [X]/N [X] ∼= (M/N)[X]. �

In similar ways, the properties on Proposition 5 also holds for the Laurent polynomial
module, the power series module, and the Laurent series module.
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Proposition 6. Let M be an R-module. If N ≤M , then:

(1) (M/N)[X,X−1] ∼= M [X,X−1]/N [X,X−1].

(2) (M/N)[[X]] ∼= M [[X]]/N [[X]].

(3) (M/N)[[X,X−1]] ∼= M [[X,X−1]]/N [[X,X−1]].

The following proposition shows that the polynomial ring over
⊕
R(n) is isomorphic

to the direct sum of polynomial ring R[X]⊕ · · · ⊕R[X] (n factor).

Proposition 7. Let R be a ring and n ≥ 1. Then (
⊕
R(n))[X] ∼=

⊕
(R[X])(n).

Proof. Let αi = (ri1, ri2, , ..., rin) ∈
⊕
R(n) and fj = r0j + r1jx + · · · + rpjx

p ∈ R[X];
where rij ∈ R for i = 0, 1, 2, ..., p and j = 1, 2, ..., n. Then we get

α0x
0 = (r01, r02, , ..., r0n)

α1x
1 = (r11x, r12x, , ..., r1nx)

:

αpx
p = (rp1x

p, rp2x
p, ..., rpnx

p).

Hence, for any f = α0 + α1x+ · · ·+ αpx
p ∈ (

⊕
R(n))[X] can be written as

f = α0 + α1x+ · · ·+ αpx
p

= (r01, r02, , ..., r0n) + (r11x, r12x, , ..., r1nx) + · · ·+ (rp1x
p, rp2x

p, , ..., rpnx
p)

= (r01 + r11x+ · · ·+ rp1x
p, r02 + r12x+ · · ·+ rp2x

p, ..., r0n + r1nx+ · · ·+ rpnx
p)

= (f1, f2, ..., fn).

Now, we define a map ϕ : (
⊕
R(n))[X]→

⊕
(R[X])(n), by

f = α0 + α1x+ · · ·+ αpx
p 7→ (f1, f2, ..., fn).

We will show that ϕ is a ring isomorphism.

Let f =
p∑
i=0

αix
i, g =

q∑
l=0

βlx
l ∈ (

⊕
R(n))[X], where αi = (ri1, ri2, , ..., rin) for i =

0, 1, 2, ..., p and αi = 0 for i > p, and βl = (sl1, sl2, , ..., sln) for l = 0, 1, 2, ..., q and βl = 0

for l > q. And let fj =
p∑

k=0

rkjx
k, gj =

q∑
k=0

skjx
k ∈ R[X] for j = 1, 2, ..., n.

Since,

ϕ(f + g) = ϕ(

p∑
i=0

αix
i +

q∑
l=0

βlx
l) = ϕ(

max(p,q)∑
k=0

(αk + βk)x
k)

= (

max(p,q)∑
k=0

(rk1 + sk1)x
k, ...,

max(p,q)∑
k=0

(rkn + skn)xk)
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= (

p∑
k=0

rk1x
k, ...,

p∑
k=0

rknx
k) + (

q∑
k=0

sk1x
k, ...,

q∑
k=0

sknx
k)

= (f1, ..., fn) + (g1, ..., gn) = ϕ(f) + ϕ(g)

and

ϕ(fg) = ϕ((

p∑
i=0

αix
i)(

q∑
l=0

βlx
l)) = ϕ(

p+q∑
k=0

(
∑
i+l=k

αiβl)x
k)

= (

p+q∑
k=0

(
∑
i+l=k

ri1sl1)x
k, ...,

p+q∑
k=0

(
∑
i+l=k

rinsln)xk)

= (

p∑
i=0

ri1x
i
q∑
l=0

sl1x
l, ...,

p∑
i=0

rinx
i
q∑
l=0

slnx
l)

= (

p∑
i=0

ri1x
i, ...,

p∑
i=0

rinx
i)(

q∑
l=0

sl1x
l, ...,

q∑
l=0

slnx
l)

= (f1, ..., fn)(g1, ..., gn) = ϕ(f)ϕ(g)

Then, ϕ is a ring homomorphism.
Next, we wil show that ϕ is injective and surjective. Let ϕ(f) = ϕ(g), then (f1, ..., fn) =

(g1, ..., gn). So, fj = gj implies rkj = skj and p = q for k = 0, 1, 2, ..., p and j = 1, 2, ...n.

Hence αi = βl for i, l = 0, 1, 2, ..., p. So, we get f =
p∑
i=0

αix
i =

q∑
l=0

βlx
l = g. In the other

word, ϕ is injective.

Furthermore, since for every (f1, f2, ..., fn) ∈
⊕

(R[X])(n), there exist f =
p∑
i=1

αix
i =

(f1, f2, ..., fn) such that ϕ(f) = (f1, f2, ..., fn), then ϕ is surjective.
So, ϕ is a ring isomorphism. Therefore, (

⊕
R(n))[X] ∼=

⊕
(R[X])(n). �
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In similar ways, the conditions on Proposition 7 also holds for R[X,X−1], R[[X]], and
R[X,X−1].

Proposition 8. Let R be a ring and n ≥ 1, then:

(1) (
⊕
R(n))[X,X−1] ∼=

⊕
(R[X,X−1])(n).

(2) (
⊕
R(n))[[X]] ∼=

⊕
(R[[X]])(n).

(3) (
⊕
R(n))[[X,X−1]] ∼=

⊕
(R[[X,X−1]])(n).

Proposition 7 and Proposition 8 can be obtained by the different way, i.e. by general-
izing Proposition 2.7. in [4] as follows.

Proposition 9. For i = 1, 2, ..., n, let Ri be rings, (S,≤) a strictly ordered monoid, and
ω(i) : S → End(Ri) monoid homomorphisms. Then

(

n⊕
i=1

Ri)[[S,

n⊕
i=1

ω(i)]] ∼=
n⊕
i=1

(Ri[[S, ω
(i)]])

.

By taking S = N ∪ 0 with usual addition, trivial order ≤ and ω
(i)
s = idRi for every

s ∈ S and every i, we get Proposition 7.

If S = Z with usual addition, trivial order ≤ and ω
(i)
s = idRi , for every s ∈ S and

every i, we get Proposition 8(1). Next, by taking S = N ∪ 0 with usual addition, usual

order ≤ and ω
(i)
s = idRi , for every s ∈ S and every i, we get Proposition 8(2). Finally, if

S = Z with usual addition, usual order ≤ and ω
(i)
s = idRi , for every s ∈ S and every i, we

get Proposition 8(3). With the different approach, Proposition 9 above came to similar
result to Proposition 1.15. on Mazurek and Ziembowski [3].

The sufficient condition for R[X]-module M [X] to be finitely generated module is given
in the following proposition.

Proposition 10. Let M be an R-module and M [X] an R[X]-module. If M is finitely
generated, then so is M [X].

Proof. Based on Lemma 3, it is enough to show M [X] ∼=
⊕

(R[X])(n)/N , for some
submodule N ⊆

⊕
(R[X])(n). Since M is finitely generated, then by Lemma 3, M ∼=⊕

R(n)/K, for some submodule K ⊆
⊕
R(n). Since K ≤

⊕
R(n), then by Lemma 4,

we get K[X] ≤ (
⊕
R(n))[X]. Furthermore, base on Proposition 7, we have K[X] ≤⊕

(R[X])(n). Hence, we can choose N = K[X].
Now, we will show, (

⊕
R(n)/K)[X] ∼=

⊕
(R[X])(n)/K[X]. By using Proposition

5, we get (
⊕
R(n)/K)[X] ∼= (

⊕
R(n))[X]/K[X]. Furthermore, by using Proposition

7, we get (
⊕
R(n))[X] ∼=

⊕
(R[X])(n). So, (

⊕
R(n)/K)[X] ∼= (

⊕
R(n))[X]/K[X] ∼=⊕

(R[X])(n)/K[X]. In other word, M [X] ∼=
⊕

(R[X])(n)/N , or M [X] is finitely generated
as an R[X]-module. �
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In similar ways, we obtain the sufficient conditions for R[X,X−1]-module M [X,X−1],
R[[X]]-module M [[X]], and R[[X,X−1]]-module M [[X,X−1]] to be finitely generated.

Proposition 11. If M is finitely generated as an R-module, then

(1) M [X,X−1] is finitely generated as an R[X,X−1]-module.

(2) M [[X]] is finitely generated as an R[[X]]-module.

(3) M [[X,X−1]] is finitely generated as an R[[X,X−1]]-module.

Now, we give the necessary conditions for R[X]-module M [X] to be an S-Noetherian
module.

Theorem 1. Let R be a ring, S ⊆ R a multiplicative set, and M an R-module. If
R[X]-module M [x] is S-Noetherian, then so is R-modul M .

Proof. Let N = {
k∑
i=0

mix
i ∈ M [X]|m0 = 0}. For any

k∑
i=0

mix
i,

l∑
i=0

nix
i ∈ N and

p∑
j=0

rjx
j ,

q∑
j=0

sjx
j ∈ R[X], we have

k∑
i=0

mix
i
p∑
j=0

rjx
j +

l∑
i=0

nix
i
q∑
j=0

sjx
j =

k+p∑
u=0

(
∑
i+j=u

mirj)x
u +

l+q∑
u=0

(
∑
i+j=u

nisj)x
u

=

max(k+p,l+q)∑
u=0

(
∑
i+j=u

(mirj + nisj))x
u

=

d∑
u=0

cux
u,

where cu =
∑

i+j=u
(mirj + nisj) and d = max(k + p, l + q).

Now, we will show that N is a submodule of M [X]. To do this, it is enough to show
that c0 = 0. Since m0 = n0 = 0, c0 =

∑
i+j=0

(mirj + nisj) = m0r0 + n0s0 = 0. So,

d∑
u=0

cux
u =

k∑
i=0

mix
i
p∑
j=0

rjx
j +

l∑
i=0

nix
i
q∑
j=0

sjx
j ∈ N , that is, N is a submodule of M [X].

Next, we define ψ : M →M [X]/N by ψ(m) = m+N , for every m ∈M . Since, for any
m,m′ ∈M and r ∈ R, ψ(m+m′) = (m+m′) +N = (m+N) + (m′+N) = ψ(m) +ψ(m′)
and ψ(rm) = rm + N = r(m + N) = rψ(m), then ψ is a module homomorphism. For
any m+N ∈M [X]/N , there exist m ∈M such that ψ(m) = m+N . So, ψ is surjective.
Furthermore, if ψ(m) = 0, then m+N = 0, that is m ∈ N . Then by the definition of N ,
we get m = 0. Therefore, Ker(ψ) = 0. So, ψ is injective. In other word, ψ is a module
isomorphism. So, M ∼= M [X]/N .

Since M [X] is a S-Noetherian module, then based on Lemma 1(1), M [X]/N is S-
Noetherian. Therefore, M is S-Noetherian. �
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In similar ways, we also obtain the necessary conditions for M [X,X−1], M [[X]], and
M [[X,X−1]] to be S-Noetherian.

Theorem 2. Let R be a ring, S ⊆ R a multiplicative set, and M an R-module.

(1) If M [X,X−1] is S-Noetherian, then M is S-Noetherian.

(2) If M [[X]] is S-Noetherian, then M is S-Noetherian.

(3) If M [[X,X−1]] is S-Noetherian, then M is S-Noetherian.

Next, the sufficient conditions for R[X]-module M [X] to be an S-Noetherian module
are given by the following theorem.

Theorem 3. Let R be a ring, S ⊆ R an anti-Archimedean multiplicative set, and M an
R-module. If R is S-Noetherian and M is finitely generated, then R[X]-module M [X] is
an S-Noetherian module.

Proof. Since R is S-Noetherian and T ⊆ R is an anti-Archimedean multiplicative set,
based on Proposition 1, R[X] is S-Noetherian. Next, based on Proposition 10, M [X] is a
finitely generated R[X]-module. Then, by using Lemma 1(3), we getM [X] is S-Noetherian
R[X]-module. �

Now, we give the sufficient conditions for R[X,X−1]-module M [X,X−1] to be an S-
Noetherian module.

Theorem 4. Let R be a ring, S ⊆ R an anti-Archimedean multiplicative set, and M
an R-module. If R is S-Noetherian and M is finitely generated, then R[X,X−1]-module
M [X,X−1] is an S-Noetherian module.

Proof. Since R is S-Noetherian and T ⊆ R is an anti-Archimedean multiplicative set,
based on Proposition 3, R[X,X−1] is S-Noetherian. Next, based on Proposition 11(1),
M [X,X−1] is a finitely generated R[X,X−1]-module. Then, by using Lemma 1(3), we get
M [X,X−1] is an S-Noetherian R[X,X−1]-module. �

Next, we give the sufficient conditions for R[[X]]-module M [[X]] to be an S-Noetherian
module.

Theorem 5. Let R be a ring, S ⊆ R an anti-Archimedean multiplicative set of R con-
sisting nonzerodivisors, and M an R-module. If R is S-Noetherian and M is finitely
generated, then R[[X]]-module M [[X]] is an S-Noetherian module.

Proof. Since R is S-Noetherian and T ⊆ R is an anti-Archimedean multiplicative set
consisting nonzerodivisors, based on Proposition 2, R[[X]] is S-Noetherian. Next, based on
Proposition 11(2), M [[X]] is a finitely generated R[[X]]-module. Then, by using Lemma
1(3), we get M [[X]] is an S-Noetherian R[[X]]-module. �
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Next, the sufficient conditions forR[[X,X−1]]-moduleM [[X,X−1]] to be an S-Noetherian
module are given by the following theorem.

Theorem 6. Let R be a ring, S ⊆ R an anti-Archimedean multiplicative set of R con-
sisting nonzerodivisors, and M an R-module. If R is S-Noetherian and M is finitely
generated, then R[[X,X−1]]-module M [[X,X−1]] is an S-Noetherian module.

Proof. Since R is S-Noetherian and T ⊆ R is an anti-Archimedean multiplicative set
consisting nonzerodivisors, based on Proposition 3, R[[X,X−1]] is S-Noetherian. Next,
based on Proposition 11(3), M [[X,X−1]] is a finitely generated R[[X,X−1]]-module. Then,
by using Lemma 1(3), we get M [[X,X−1]] is an S-Noetherian R[[X,X−1]]-module. �

For any multiplicative subset S of a ring R, we define the set

S[X] = {
n∑
i=0

six
i ∈ R[X]|si ∈ S for every i}.

The following lemma shows that S[X] is a multiplicative subset of R[X] when S is addi-
tively closed.

Lemma 6. Let S be a multiplicative subset of a ring R. If S is additively closed, then
S[X] is a multiplicative subset of polynomial ring R[X].

Proof. For any f, g ∈ S[X], we will show that fg ∈ S[X]. Let f =
p∑
i=0

six
i and

g =
q∑
j=0

tjx
j , then we have fg = (

p∑
i=0

six
i)(

q∑
j=0

tjx
j) =

p+q∑
k=0

ckx
k, where ck =

∑
i+j=k

sitj .

Since S is multiplicative subset of R, we obtain sitj ∈ S for every i, j. Furthermore,
since S is additively closed, we have ck =

∑
i+j=k

sitj ∈ S. In other words, fg ∈ S[X]. Thus,

S[X] is a multiplicative subset of R[X]. �

Now, for any multiplicative subset S of a ring R, we also define the sets

S[X,X−1] = {
n∑

i=−u
six

i ∈ R[X,X−1]|si ∈ S for every i},

S[[X]] = {
∑
i≥0

six
i ∈ R[[X]]|si ∈ S for every i}, and

S[[X,X−1]] = {
∑
i

six
i ∈ R[[X,X−1]]|si ∈ S for every i}.

In similar ways on Lemma 6, we obtain the sufficient conditions for S[X,X−1], S[[X]],
and S[[X,X−1]] to be multiplicative subset of R[X,X−1], R[[X]], and R[[X,X−1]], re-
spectively.



A. Faisol, B. Surodjo, S. Wahyuni / Eur. J. Math. Sci., 5 (1) (2019), 1-13 12

Lemma 7. Let S be a multiplicative subset of a ring R. If S is additively closed, then

(1) S[X,X−1] is a multiplicative subset of Laurent polynomial ring R[X,X−1].

(2) S[[X]] is a multiplicative subset of power series ring R[[X]].

(3) S[[X,X−1]] is a multiplicative subset of Laurent series ring R[[X,X−1]].

Finally, we give the sufficient conditions forM [X], M [X,X−1], M [[X]], andM [[X,X−1]]
to be S[X]-Noetherian, S[X,X−1]-Noetherian, S[[X]]-Noetherian, and S[[X,X−1]]-Noetherian,
respectively.

Theorem 7. Let R be an S-Noetherian ring, S ⊆ R an additive and multiplicative set
with anti-Archimedean properties, and M a finitely generated R-module. Then,

(1) R[X]-module M [X] is an S[X]-Noetherian module.

(2) R[X,X−1]-module M [X,X−1] is an S[X,X−1]-Noetherian module.

Proof.

(1) Based on Theorem 3, M [X] is an S-Noetherian R[X]-module. Furthermore, S[X] is
a multiplicative subset of R[X] by Lemma 6. It is clear that S ⊆ S[X]. Therefore,
by using Lemma 2, we get M [X] is an S[X]-Noetherian R[X]-module.

(2) Based on Theorem 4, M [X,X−1] is an S-Noetherian R[X,X−1]-module. Further-
more, S[X,X−1] is a multiplicative subset of R[X,X−1] by Lemma 7(1). It is
clear that S ⊆ S[X,X−1]. Therefore, by using Lemma 2, we get M [X,X−1] is
an S[X,X−1]-Noetherian R[X,X−1]-module. �

Theorem 8. Let R be an S-Noetherian ring, S ⊆ R an additive and multiplicative set
consisting nonzerodivisors with anti-Archimedean properties, and M a finitely generated
R-module. Then,

(1) R[[X]]-module M [[X]] is an S[[X]]-Noetherian module.

(2) R[[X,X−1]]-module M [[X,X−1]] is an S[[X,X−1]]-Noetherian module.

Proof.

(1) Based on Theorem 5, M [[X]] is an S-NoetherianR[[X]]-module. Furthermore, S[[X]]
is a multiplicative subset of R[[X]] by Lemma 7(2). It is clear that S ⊆ S[[X]].
Therefore, by using Lemma 2, we get M [[X]] is an S[[X]]-Noetherian R[[X]]-module.

(2) Based on Theorem 6, M [[X,X−1]] is an S-Noetherian R[[X,X−1]]-module. Fur-
thermore, S[[X,X−1]] is a multiplicative subset of R[[X,X−1]] by Lemma 7(3). It is
clear that S ⊆ S[[X,X−1]]. Therefore, by using Lemma 2, we get M [[X,X−1]] is an
S[[X,X−1]]-NoetherianR[[X,X−1]]-module. �
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