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1. Introduction

For any integer m > —p, let &, ,, denote the class of all meromorphic functions f of the
form:

f(z)zz_p—l-Zakzk (peN=1{1,2,...}), (D
k=m

which are analytic and p—valent in the punctured disc U* = {z € C: 0 < |z| < 1} = U\{0}.
For convenience, we write &, _, 1, = X,. If f and g are analytic in U, we say that f is
subordinate to g, written symbolically as, f < g or f(z) < g(z), if there exists a Schwarz
function w, which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 (z € U) such
that f(z) = g(w(z)) (z € U). In particular, if the function g is univalent in U, we have the
equivalence [see for example 5]:

f(z) < g(z) & f(0) =¢(0) and f(U) c g(V).
For functions f € %, ,, given by (1), and g € %, ,, defined by

[e¢]

gz)=z7"+ > bz* (m>—p;peN), 2)

k=m
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then the Hadamard product (or convolution) of f and g is given by

(F*g)=27P+ ) aebs* = (g*f)z) (m>—p;peN).

k=m

For f € &, ,, we introduce the integral operator Q. = pm 5

aB,y * p,m

_T(a+p-y+1) 1 (° EN*TT ptp-1
Qg f )= F(/o’)l"(a—y—i—l)z/“l’fo (1-3) @

1 Tla+B-r+1) ¢ I'(B+p+k) .
Ea r(s) ;F(a+ﬁ+p+k—v+1)a"z

(>0, a>y—1;y>0; peN;zeU),

andQY 1ﬁyf(z)=f(2;) (B>0;y>0; peN;zeU*).
By setting

r(p) ZF(a+/3+p+k )/—l—l)zk
r(a+/5—y+1) I'(B+p+k)

(B>0; a>y—1;y>0,peN;zeU*),

fP @ ="

we define a new function f 5 ;; ’ in terms of the Hadamard product as follows

1
2P (1—2z)
(u>0;>0; a>y—1;y>0; peN;z€U").

@) frg, (&)=

aﬁY

Now we introduce the operator Qp : Xy m — Zpm as follows:

By T TP
aﬁyf(Z) fam(z)*f(z) (z eU*;f e Z]p’m) .
We can easily find from (5), (6), and (7) that

IF'(a+B—-v+1)
r(8)

N r(B+p+k) () ks
' |:kz=(:)(l“(a+[5+p+k—y+1)) (k+p)!a"zk}

(L>0;>0; a>y—1;y>0; peN;z€U"),

flz)==""+

aﬁV

as follows:

86

(3

(4)

()

()

(7)

€))

and QY 1[Mf(z) =f(z) (B>0; u=1;y>0; peN;z€U"), where (u), is the Pochham-

mer symbol defined by

W) { (k=0),
W= pp+1)...(u+k-1) (keN)
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From (8), it is easy to verify that

2 (@2, £®)) =@ F@) = (u+p) QY F(2), )

Remark 1. (i) Foru=1, we have ", =QF

aﬁV @By’

(i) Fory =y =1, Qp lﬁ Q 5 where the operator Qi p was introduced and studied by
Aqlanetal [2] (see also [1 ])

(iii) For p =1, Q wf Q’; B where the operator Q‘; p was introduced and studied by Wang et
al. [7]; ’ ’

(iv) Forp=u=y=1, Qa 1= = Qq,p, Where the operator Q, g was introduced and studied by
Lashin [4].

Definition 1. We say that a function f € X, , is in the class 25,,,1(01, B,y,A), if it satisfies the
following condition:
p+1
241 (@ 1)

Re<{ — >A, zeU" (10)
P

where f>0,a>y—1,vy>0,u>0,0<A<1,andp eN.
Using (9) condition (10) can be re-written in the form

pu+1
wpy S () apyt (@)
Re —u++(u+p)+ >4, 0<A<lzeU. (1)

2. Basic Properties of the Class ng(a, B,v,A)

Unless otherwise mentioned, we shall assume in the reminder of this paper that § > 0,
a>y—1,y>0,u>0,0<A<1,and p eN.

We begin by recalling the following result (Jack’s lemma), which we shall apply in proving
our inclusion theorems below.

Lemma 1. [3] Let the (nonconstant) function w(z) be analytic in U, with w(0) = 0. If |w(z)|
attains its maximum value on the circle |z| = r < 1 at a point 2, € U, then
20w (20) = Ew(zy), where & is a real number and & > 1.

Theorem 1. The following inclusion property holds true for the class Zg’m(a, B,v,A):

i (e, By, A) C 2 (@, B, A). (12)
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Proof Let f(z) € ©h +1(a B,v,A) and define a regular function w(z) in U such that
w(0)=0, w(z) # —1 by

1422 Dw(z)
f@=ps P (13)

uQH N E (2) + (u+ )™

a[3)f a,B,y

Differentiating (13) with respect to z, we obtain

_ZPH( b | (Z)) _1+@A-Dw() 2(1-2) zw(2)
p 1+w(z) b (A+w)*

(14)

We claim that |[w(z)] < 1 for z € U. Otherwise there exists a point 2z, € U such that
max,|<i,,| [W(2)| = [w(zo)| = 1. Applying Jack’s lemma, we have

zow (20) = Ew(ze) (£ >1). (15)
From (14) and (15) we have
25" (Qtf (Zo)) C14@A-Dw(z) 2(1-2)  Ewlz)

- = - . 16
p 1+w(z) B (T4 w(z)? (10)

. 1+(2k—1)w(z0)} — > Ew(zg) . ..
Since Re{—1 ) A, E>1,and —(1+w(zo))2 is real and positive, we see that
(@)

- < A, which obviously contradicts f (z) € =5 +1(a B,v,A). Hence

Re

|[w(z)| <1 for z € U, and it follows from (13) that f(z) € Zg,m(a, B,7v,A). This completes the
proof of Theorem 1.

Theorem 2. Let ¢ be any real number and ¢ > 0. If f (z) € Zg,m(a, B,y,A), then

c zZ
Jep(2)= e f tHPIf () de €38 (a,B,7,4)  (c>0). a7
0
Proof. From (17), we have

2 (@ ey @) = Qb () (c+p) QL Ty 2). (18)

Define a regular function w(z) in U such that w(0) =0, w(z) # —1 by
2P ( Qopy Jep (z)) C1+(2A-Dw(z)
p B 1+w(z) )

(19)
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From (18) and (19) we have

. 1+02A-1Dw(z)
14+ w(z)

aﬁ}’f(z)_ (C+p)Qa[o’yJC,P(z):pz

Differentiating (20) with respect to z, and using (19)) we obtain

_ZPH( aﬁrf(z)) _1+2A-Dwk) 20-2) W@

p 1+w(2) ¢ (1+w@)?*

The remaining part of the proof of Theorem 2 is similar to that of Theorem 1.

Theorem 3. If f (z) € X, ,,, and satisfy the condition

Re

_ZPH( aﬁyf(z)) >7L_(1—7t)
p 2c

(c>0).

Then the function

P4
C
Jep (@)= Zcﬂ,J P (0 de €3 (a,B,7,4).
0

The proof of Theorem 3 is similar to that of Theorem 2 and so we omit it.

Theorem 4. Let f (2) be defined by

%ﬂ@zzigfﬁﬂﬂf&Mt (c>0).

0

IfJ.p,(z)€ Zz,m(a,[ﬁ,y, A), then f (z) € Z m(a, B,y,A)in |z| < m

Proof. Since F (2) € Zg,m(a, B,v, ) we can write

/

— (@ Jep () =P A+ (1= DuE),

89

(20)

(2D

(22)

(23)

(24)

where u (z) € P, the class of functions with positive real part in the unit disk U and normalized

by u(0) = 1. We can re-write (24) as
—uQt ey @)+ (PR Je, (2)=pz P [+ (1= Vu()].

Differentiating (25) with respect to z, and using (18) we obtain

Zp+1( a[a’yf(z))
- p

» 1,
—A1(1-2) =u(z)—|—zzu(z).

(25)

(26)
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Using the well-known estimate [see 6] ‘zu/ (z)‘ < % Reu(z),|z| =r, (26) yields

The right-hand side of (27) is positive if r <

2:p+1 QP,M f (Z) 1 2
Re{ | — ( il ) —Ala-n1 2(1—— i
p C

2) Reu(z). 27

1-r

C

1+4v/c2+1°

The result is sharp for the function f(z) defined by f(z) = cz“'% (z“’pJC,p (z)) where

/

Jepl®) s given by (@Y Jep () = —pap LA

(1]

(2]

(3]
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