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Abstract. In this paper we give a new class of extension rings called the (σ, τ)-generalized power
series ring

[[
RS,≤;σ, τ

]]
with coefficients in a ring R and exponents in a strictly ordered monoid

S which extends Ribenboim’s and Ziembowski’s constructions of generalized and skew generalized
power series rings, respectively. The weak annihilator property of

[[
RS,≤;σ, τ

]]
is investigated in

this paper. We also show, under certain conditions, that the (σ, τ)-generalized power series ring[[
RS,≤;σ, τ

]]
is a right zip (weak zip) ring if and only if R is a right zip (weak zip) ring.
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1. On Zip and Weak Zip rings

Throughout this article R denotes an associative ring with identity 1R, and nil (R) is
the set of all nilpotent elements of R. Recall that a ring R is reduced if it has no nonzero
nilpotent elements, a ring R is reversible if ab = 0 implies ba = 0 for each a, b ∈ R, a ring
R is semicommutative if for all a, b ∈ R, ab = 0 implies aRb = 0, and a ring R is called NI
if nil (R) forms an ideal of R. Clearly, reduced rings, reversible rings and semicommutative
rings are NI rings.

The first time that the concept of zip ring appeared as it is known nowadays was in
1989, by Faith in [5]. Previously, Beachy and Blair in (1975) and Zelmanowitz in (1976)
[24], introduced a more general property. Beachy and Blair defined rings whose faithful
right ideals are cofaithful in the sense that r (I1) = 0 for a finite subset I1 ⊆ I (= rings with
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the right Beachy-Blair condition), where rR (I1) = (0 : I1) = {a ∈ R | xa = 0 for all x ∈ I1}
is the right annihilator of I1.(= rings with the right Beachy-Blair condition) and, Zel-
manowitz worked with rings with the “finite intersection property” on annihilator right
ideals. Both properties are equivalent, but they were introduced independently and par-
allelly, obtaining quite different results.

Faith [5] gives the following equivalent definitions of zip rings:

Definition 1. (i) A ring R is called right zip if the right annihilator rR(X) of a subset
X of R is zero, rR(Y ) = 0 for a finite subset Y ⊆ X.

in the above definition, one can equivalentely require that X is a left ideal, so

(ii) A ring R is called right zip if L is a left ideal and rR(L) = 0, then there exists a
finitely generated left ideal L0 ⊆ L such that rR(L0) = 0. similarly for left zip ring.
A ring R is zip if it is right and left zip.

Zelmanowitz [24] stated that any ring satisfying the descending chain condition on
right annihilators is a right zip ring, but the converse does not hold, this observation
thoght is trivial but important in what follows.

Recall the following definitions; A ring R is left kasch if every maximal left ideal has
a nonzero right annihilator, equivalently, every simple left module embeds in R. A ring
R is said to be a (left) Goldie ring if: R satisfies the ascending chain condition on left
annihilators and R has no infinite direct sum of nonzero left ideals. It should be noted that
the ascending chain condition on left annihilators is equivalent to the descending chain
condition on right annihilators [7]. The class of right zip rings is enough wide as it can be
deduced from the next proposition.

In the following proposition we collect, without proofs, a few basic properties of right
zip rings.

(i) Any finite ring is right (and left) zip;

(ii) All domains are zip rings, since the annihilators of a subset X and heir subset Y ⊆ X
are zero.

(iii) Any left kasch ring is right zip and conversely if finitely generated left ideals are
annihilators[5].

(iv) Left (right) self-injective ring R is right (left) zip if and only if R is psedo forbenius
(=PF) [], and a semiprime commutative ring R is zip if and only if R is Goldie [6].

(v) If R ⊆ S are rings such that SR is an essential extension of R, and if S is a right
zip, then so is R.

(vi) Cedò[3]: If SR is a free left R-module, and if S is a right zip, then so is R.

Since Quasi Forbenius rings are right (left) artinian and right artinian rings are
right Goldie, it follows that,
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(vii) Quasi Forbenius rings are right (left) zip rings.

(viii) Semiprimary rings and J2 = 0 is right and left zip ([7], Lemma 3-39).

(ix) Every right zip ring satisfies the right Beachy-Blair condition, but there are examples
of rings with the left Beachy-Blair condition that are not left zip. See [9]. However,
for commutative or reduced rings, it is not difficult to see that both properties are
equivalent.

As a generalization of annihilators, Ouyang in [14] introduced the concept of weak
annihilator (nilpotent annihilator). For a nonempty subset X of a ring R, the weak
annihilator of X in R is defined as follows:

NR (X) = (nil (R) : X) = {a ∈ R|xa ∈ nil (R) for all x ∈ X} .

In general, rR (X) ⊆ NR (X) and lR (X) ⊆ NR (X) for any subset X of a ring R. If R is
reduced, then rR (X) = lR (X) = NR (X) for any subset X of a ring R.

We can easily prove that

ab ∈ nil (R)⇔ ba ∈ nil (R) for all a, b ∈ R.

Therefore, there is no distinguish between the right weak annihilator and the left weak
annihilator.

It is easy to see that for any subset X ⊆ R, NR (X) is an ideal of R in case that nil (R)
is an ideal. For more details on the weak annihilator property see [14], [16], [17] and [15].

Definition 2. A ring R is called a weak zip ring if NR(X) ⊆ nil(R) for a subset X of R,
then there exists a finite subset X0 ⊆ X such that NR(X0) ⊆ nil(R).

The next results establish a connection of right, left zip rings with weak zip rings.

Theorem 1. Suppose that R is an NI ring. Then R is weak zip if and only if R =
R /nil (R) is right zip.

Proof. Let R be weak zip and X = X + nil (R) ⊆ R = R /nil (R) for some set X ⊆ R
such that rR

(
X
)

= 0 = nil (R). For any element a ∈ NR (X) , we deduce that a ∈ nil (R).
Hence NR (X) ⊆ nil (R). Since R is weak zip, there exists a finite subset X0 ⊆ X such
that NR(X0) ⊆ nil(R). We thus get a finite subset X0 + nil (R) = X0 ⊆ X = X + nil (R).
Let a ∈ rR

(
X0

)
. Then X0a = 0 = nil (R), which implies that X0a ⊆ nil (R). Hence

a ∈ NR(X0) ⊆ nil(R) and so rR
(
X0

)
= 0 = nil (R). Therefore R = R /nil (R) is right zip.

Conversely, let R = R /nil (R) be right zip and X ⊆ R such that NR (X) ⊆ nil (R). It is
easy to see that rR

(
X
)

= 0 = nil (R). Since R = R /nil (R) is right zip, there exists a finite
subset X0 +nil (R) = X0 ⊆ X = X+nil (R) such that rR

(
X0

)
= 0 = nil (R). We have X0

is a finite subset of X and for any element a ∈ NR (X0) we get a ∈ rR
(
X0

)
= 0 = nil (R).

Hence a ∈ nil(R) and so NR (X0) ⊆ nil (R). Therefore R is weak zip.
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Corollary 1. Suppose that R is an NI ring. Then R is weak zip if and only if R =
R /nil (R) is weak zip.

Given a ring R and an R-bimodule RMR, the trivial extension of R by M is the ring
T (R,M) = R⊕M with the usual addition and the multiplication

(r1,m1) (r2,m2) = (r1r2, r1m2 +m1r2) , where r1, r2 ∈ R and m1,m2 ∈M.

This is isomorphic to the ring of all matrices

(
r m
0 r

)
, where r ∈ R and m ∈ M with

the usual matrix operations.

Corollary 2. Let R be a reduced ring. Then T (R,M) is weak zip if and only if R is right
zip.

Proof. Set A = T (R,M) . Since R is a reduced ring, we can easily conclude that

nil (A) ∼=
{(

0 m
0 0

)
|m ∈M

}
and hence A = A /nil (A) ∼= R, which completes the

proof.

2. (σ, τ)-generalized power series ring.

Let σ be an endomorphism of R, a ring R is said to be σ-compatible if for each
a, b ∈ R, ab = 0⇔ aσ(b) = 0.

Let (S,+,6) be a strictly ordered commutative monoid (that is, (S,6) is an ordered
additive monoid satisfying the condition that, if s < s

′
, then s+ t < s

′
+ t for s, s

′
, t ∈ S).

Recall that a subsetX of (S,6) is said to be artinian if every strictly decreasing sequence of
elements of X is finite and that X is narrow if every subset of pairwise order-incomparable
elements of X is finite.

Now, let R be a ring, (S,≤) a strictly ordered monoid, suppose the two maps σ :
S −→ End (R) and τ : S × S −→ U (R) (the group of invertible elements of R). Let
A =

[[
RS,≤;σ, τ

]]
denotes the set of all maps f : S −→ R such that the support of

f (supp(f) = {s ∈ S| f (s) 6= 0}) is artinian and narrow. For every s ∈ S and f, g ∈[[
RS,≤;σ, τ

]]
, let

Xs (f, g) = {(u, v) ∈ S × S| u+ v = s, f (u) 6= 0, g (v) 6= 0} .

It follows from ([19], Section 2.1) that Xs (f, g) is finite. T he operation of multiplication
on A is defined by the following way:

(fg) (s) =
∑

(u,v)∈Xs(f,g)

f (u)σu (g (v)) τ (u, v) ,

and (fg) (s) = 0 if Xs (f, g) = φ. In order to ensure the associativity, it is necessary to
impose two additional conditions on σ and τ , namely, for all u, v, w ∈ S :
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(i) τ (u, v) τ (u+ v, w) = σu (τ (v, w)) τ (u, v + w) ,

(ii) σuσv = η (u, v)σu+v, where η (u, v) denotes the automorphism of R induced by the
unit τ (u, v), namely η (u, v) (r) = τ (u, v) rτ−1 (u, v), for all r ∈ R.

It is now routine to check that A =
[[
RS,≤;σ, τ

]]
, with componentwise addition and

the above multiplication rule, is a ring which we call the (σ, τ)-generalized power series
ring.

It is easy to verify that if τ (u, v) = 1 for all u, v ∈ S, σ : S −→ End(R) be a monoid
homomorphism, then A =

[[
RS,≤;σ, τ

]] ∼= [[
RS,≤;σ

]]
is the ring of skew generalized

power series in the sense of Mazurk and Ziembowski [13].
In the same time, if we set also σ (s) = IdR ∈ End(R) for all s ∈ S, the identity map

of R, then A ∼=
[[
RS,≤]] , the ring of generalized power series in the sense of Ribenboim

(See [15],[20], and [21]).
It is easy to check that polynomial rings, Laurent polynomial rings, monoid rings,

formal power series rings, Laurent power series rings and their skew versions are special
cases of A.

For any r ∈ R and any s ∈ S, we define the map cr ∈ A =
[[
RS,≤;σ, τ

]]
as follows:

cr(s) =

{
r if s = 0,
0 if s 6= 0.

Clearly, supp (cr) = 0 for each r ∈ R. Moreover the identity element of A is c1 : S → R
given by c1 (0) = 1, and c1 (s) = 0 for all s ∈ S\ {0}. It is easy to see that r → cr (0)
is a ring embedding of R into A via σ1 = IdR, i.e. σs (1) = 1 for any s ∈ S and
τ (s, 0) = τ (0, s) = 1 for all s ∈ S. For any r ∈ R, f ∈ A, we have rf = cr (0) f.

Let Cf be the content of f which is defined as follows:

Cf = {f (s) |s ∈ supp (f)} .

=⇒ In this paper we extend the results of some recent papers on the rings of skew gen-
eralized power series (see for example [13], [16], and [22]) to the class of (σ, τ)-generalized
power series ring A. Namely we show, under some Armendariz conditions, that the zip
and weak zip properties on the base ring R can be transferred to the (σ, τ)-generalized
power series ring A. The results of Sections 3 and 4 generalize those in [16], [17] and [22].

3. (σ, τ)-Generalized Power Series Over Zip Rings

Extensions of zip rings were studied by several authors. Beachy and Blair [2] showed
that if R is a commutative zip ring, then the polynomial ring R [x] is a zip ring. In [8]
Hong et al. proved that an Armendariz ring R is a right zip ring if and only if R [x] is a
right zip ring. Cortes [4] studied the relationship between right zip property of R and the
skew polynomial extensions over R using a skew version of Armendariz condition.

Definition 3. A ring R is an S-Armendariz if whenever f, g ∈
[[
RS,≤]] such that fg = 0,

then f (u) g (v) = 0 for all u, v ∈ S.



M. H. Fahmy, A. M. Hassanein, M. A. Farahat, S. Kamal El-Din / Eur. J. Math. Sci., 3 (1) (2017), 14-31 19

Definition 4 ([12]). If σ is a monoid homomorphism, then a ring R is an (S, σ)-Armendariz
if whenever fg = 0, where f, g ∈

[[
RS,≤, σ

]]
, then f (u)σu (g (v)) = 0 for all u, v ∈ S.

Definition 5. A ring R is an (S, σ, τ)-Armendariz if whenever fg = 0, where f, g ∈ A =[[
RS,≤;σ, τ

]]
, then f (u)σu (g (v)) τ (u, v) = 0 .

It is obvious that R is an (S, σ, τ)-Armendariz if and only if it is an (S, σ)-Armendariz
ring. For more details on Armendariz ring see [1], [11], [12] and [18].

For a nonempty subset X ⊆ R, we define the following subsets of A =
[[
RS,≤;σ, τ

]]
[[
XS,≤;σ, τ

]]
=
{
f ∈ A|f (s) ∈ X

⋃
{0} for each s ∈ S

}
,

rA (X) = {f ∈ A |cxf = 0 for all x ∈ X } ,[[
rR (X)S,≤ ;σ, τ

]]
= {f ∈ A |f (s) ∈ rR (X) for all s ∈ S } , and

[[
(nil (R))S,≤ ;σ, τ

]]
= {f ∈ A |f (s) ∈ nil (R) for all s ∈ S } .

We begin with the following Lemma and use it without further mention.

Lemma 1. Suppose that R is a ring. Then

rA (X) =
[[

rR (X)S,≤ ;σ, τ
]]

for any X ⊆ R.

Proof. Let f ∈ rA (X), then 0 = cxf for each x ∈ X. So for each s ∈ supp (f), we have

0 = (cxf) (s) = xσ0 (f (s)) τ (0, s)

Since σ0 = IdR and τ (0, s) = 1, we conclude that xf (s) = 0 thus f (s) ∈ rR (X) for each

s ∈ S. Therefore, f ∈
[[

rR (X)S,≤ ;σ, τ
]]

and we have

rA (X) ⊆
[[

rR (X)S,≤ ;σ, τ
]]
.

On the other hand, suppose f ∈
[[

rR (X)S,≤ ;σ, τ
]]

, then xf (s) = 0 for each s ∈
supp (f).

0 = xf (s) = xσ0 (f (s)) τ (0, s) = (cxf) (s) .

Hence, f ∈ rA (X) and it follows that[[
rR (X)S,≤ ;σ, τ

]]
⊆ rA (X) .

Consequently, rA (X) =
[[

rR (X)S,≤ ;σ, τ
]]

.
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Definition 6. A ring R is said to be S-compatible if for each a, b ∈ R, ab = 0⇔ aσs(b) =
0 for all s ∈ S.

Using Lemma 1, we have the following map, ϕ : rR
(
2R
)
−→ rA

(
2A
)

defined by

ϕ (I) =
[[
IS,≤;σ, τ

]]
for every I ∈ rR

(
2R
)
,where

rR
(
2R
)

= {rR (X) |X ⊆ R} and rA
(
2A
)

= {rA (Y ) |Y ⊆ A} .

Obviously ϕ is an injective map.
The following Lemma shows that ϕ is a bijective map if and only if R is (S, σ, τ)-

Armendariz ring.

Lemma 2. Suppose that R is an S-compatible ring. Then the following are equivalent:
(1) R is (S, σ, τ)-Armendariz ring.
(2) ϕ is a bijective map.

Proof. Suppose that R is an (S, σ, τ)-Armendariz ring. Let Y ⊆ A, then C (Y ) =⋃
f∈Y

Cf . From Lemma 1, it is sufficient to show that

rA (f) =
[[

rR (Cf )S,≤ ;σ, τ
]]

= ϕ (rR (Cf )) for all f ∈ Y.

Let g ∈ rA (f), then fg = 0. Since R is (S, σ, τ)-Armendariz

0 = f (u)σu (g (v)) τ (u, v)

for each u ∈ supp (f) and v ∈supp(g). Since τ (u, v) ∈ U (R) and R is S-compatible, we
get 0 = f (u) g(v).

Hence g (v) ∈ rR (Cf ), consequently g ∈
[[

rR (Cf )S,≤ ;σ, τ
]]

and we have

rA (f) ⊆
[[

rR (Cf )S,≤ ;σ, τ
]]
.

Conversely, let g ∈
[[

rR (Cf )S,≤ ;σ, τ
]]

, this implies that g (v) ∈ rR (Cf ) for each

v ∈ supp (g) . Then 0 = f (u) g(v) for each v ∈supp(g) and u ∈ supp (f) . Since R is
S-compatible and τ (u, v) ∈ U (R) , it follows that

0 = f (u)σu (g (v)) τ (u, v) .

Thus, for each s ∈ S, we have

(fg) (s) =
∑

(u,v)∈Xs(f,g)

f (u)σu (g (v)) τ (u, v) = 0.

Therefore, g ∈ rA (f) and it follows that[[
rR (Cf )S,≤ ;σ, τ

]]
⊆ rA (f) .
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Now, we can conclude the following:

rA (Y ) =
⋂
f∈Y

rA (f) =
⋂
f∈Y

[[
rR (Cf )S,≤ ;σ, τ

]]
=

⋂
f∈Y

rR (Cf )S,≤ ;σ, τ



rR

⋃
f∈Y

Cf

S,≤

;σ, τ


 =

[[
rR (C (Y ))S,≤ ;σ, τ

]]
= ϕ (rR (C (Y ))) .

Thus ϕ is surjective.
(2) =⇒ (1)
Let f, g ∈ A such that fg = 0, then g ∈ rA (f) . By the assumption, we have

rA (f) = ϕ (rR (Cf )) =
[[

rR (Cf )S,≤ ;σ, τ
]]
.

Hence g ∈
[[

rR (Cf )S,≤ ;σ, τ
]]

which implies that g (v) ∈ rR (Cf ) for each v ∈ S. So,

fcg(v) = 0. Thus,
0 =

(
fcg(v)

)
(u) = f (u)σu (g (v)) τ (u, v)

for each u ∈supp(f) and v ∈supp(g). Hence R is (S, σ, τ)-Armendariz ring.

Salem in [22] studied the relationship between right zip property of R and right zip
property of the ring of skew generalized power series over R using a skew version of
Armendariz condition compatible with the structure of the skew generalized power series
ring.

Motivated by the above we introduce our main result in this section concerning the
transfer of right zip property between R and the ring of (σ, τ)-generalized power series as
follows:

Theorem 2. Let (S,≤) a strictly ordered monoid, R an (S, σ, τ)-Armendariz and S-
compatible ring. Then A is a right zip ring if and only if R is a right zip ring.

Proof. (=⇒) Suppose A is a right zip ring and X ⊆ R satisfies rR (X) = 0. Let
Y = {cx|x ∈ X} ⊆ A. Then, by Lemma 1,

rA (Y ) = rA (cX) = rA (X) =
[[

rR (X)S,≤ ;σ, τ
]]

= 0.

Since A is a right zip ring, there exists a finite subset Y0 = {cx1 , . . . , cxn} ⊆ Y such that
rA (Y0) = rA (cx1 , . . . , cxn) = 0 for some x1, . . . , xn ∈ X0 ⊆ X. From Lemma 1, we have

0 = rA (Y0) = rA (X0) =
[[

rR (X0)
S,≤ ;σ, τ

]]
.

Hence rR (X0) = 0. Thus R is a right zip ring.
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(⇐=) Conversely, suppose that R is a right zip ring and Y ⊆ A be such that rA (Y ) = 0.
Let

T = C (Y ) =
⋃
f∈Y

Cf =
⋃
f∈Y
{f (u)| u ∈ supp (f)} .

Then, by Lemma 1,

0 = rA (Y ) =
[[

rR (C (Y ))S,≤ ;σ, τ
]]

=
[[

rR (T )S,≤ ;σ, τ
]]

.

Thus, rR (T ) = 0. Since R is a right zip ring, there exists a finite subset T0 ⊆ T such
that rR (T0) = 0. For each f (u) ∈ T0, there exists fu ∈ Y such that fu (ui) = f (u) for
some ui ∈ supp (fu). Let Y0 be the minimal subset of Y , with respect to inclusion, such
that fu ∈ Y0 for each f (u) ∈ T0. Thus Y0 is a nonempty finite subset of Y . Now we
show that rA (Y0) = 0. Suppose that rA (Y0) 6= 0 and let g ∈ rA (Y0) \ {0}, then fug = 0
for all fu ∈ Y0. Since R is (S, σ, τ)-Armendariz,fu (w) σw (g (v)) τ (w, v) = 0. Since
τ (w, v) ∈ U (R) and R is an σ-compatible ring, fu (w) g (v) = 0 for all w ∈ supp (fu) and
v ∈ supp (g). Hence g (v) ∈ rR (C (Y0)) = rR (T0) = 0 for all v ∈ supp (g), a contradiction.
Therefore rA (Y0) = 0 and hence A is a right zip ring.

From Theorem 2 if we set τ (u, v) = 1 for every u, v ∈ S and σ : S −→ End (R) be a
monoid homomorphism, we get immediately the following Corollary:

Corollary 3. ([22], Theorem 2.3) Suppose that S is a strictly ordered monoid, σ : S −→
End (R) a monoid homomorphism, R is an S-compatible and (S, σ)-Armendariz ring.
Then R is a right (left) zip ring if and only if

[[
RS,≤;σ

]]
is a right (left) zip ring.

As a special case of the last result we get the following Corollary, if we set τ (u, v) = 1
for every u, v ∈ S and σs = IdR, for every s ∈ S.

Corollary 4. ([23], Theorem 2.3) Let S be a strictly ordered monoid and R an S-
Armendariz ring. Then R is a right zip ring if and only if

[[
RS,≤]] is a right zip ring.

4. (σ, τ)−Generalized Power Series Over Weak Zip Rings

In this section, we mainly discuss the weak annihilator property of the ring A =[[
RS,≤;σ, τ

]]
.

The next two Lemmas appear in [16] and [17].

Lemma 3. Let X,Y be subsets of a ring R. Then the following hold:

(i) X ⊆ Y implies NR (X) ⊇ NR (Y ).

(ii) X ⊆ NR ((NR (X))).

(iii) NR (X) = NR ((NR (NR (X)))).

Lemma 4. Let σ : S −→ End (R) be a map, x 7→ σx. If σx is compatible for all x ∈ S,
then, for each a, b ∈ R, the following hold:
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(i) ab ∈ nil (R)⇐⇒ aσx (b) ∈ nil (R) .

(ii) ab ∈ nil (R)⇐⇒ σx (a) b ∈ nil (R) .

Proposition 1. Let (S,≤) be a strictly totally ordered monoid, R an S-compatible NI ring
with nil (R) nilpotent. Then f ∈ nil (A) if and only if f (s) ∈ nil (R) for every s ∈ supp (f) .

Proof. (⇒)Suppose that f ∈ nil (A), then there exists some positive integer k such
that fk = 0. We will use transfinite induction on the strictly totally ordered monoid
(S,≤) to show that f (s) ∈ nil (R) for every s ∈supp(f). Let x0 be the minimal element
of supp(f) with respect to the order ≤. If v1, v2, . . . , vk ∈supp(f) are such that v1 + v2 +
. . . + vk = kx0, then x0 ≤ vi for all 1 ≤ i ≤ k. If x0<vi for some 1 ≤ i ≤ k, then
kx0 = x0 + x0 + . . .+ x0︸ ︷︷ ︸

k-times

<v1 + · · ·+ vk = kx0 a contradiction. Thus x0 = vi for 1 ≤ i ≤ k.

Hence from fk = 0, it follows that:

0 = fk (kx0) =
(
fk−1f

)
(kx0)

⇒ 0 = fk−1 ((k − 1)x0)σ(k−1)x0
(f (x0)) τ ((k − 1)x0, x0)

⇒ 0 = f (x0)σx0 (f (x0)) τ (x0, x0)σ2x0 (f (x0)) τ (2x0, x0) · · ·
σ(k−1)x0

(f (x0)) τ ((k − 1)x0, x0) .

Since τ (x, y) is invertible for all x, y ∈ S, we have

f (x0)σx0 (f (x0)) τ (x0, x0)σ2x0 (f (x0)) τ (2x0, x0) · · ·σ(k−1)x0
(f (x0)) = 0

Since R is S-compatible, we have

f (x0)σx0 (f (x0)) τ (x0, x0)σ2x0 (f (x0)) τ (2x0, x0) · · ·
σ(k−2)x0

(f (x0)) τ ((k − 2)x0, x0) f (x0) = 0.

⇒ f (x0)σx0 (f (x0)) τ (x0, x0)σ2x0 (f (x0)) τ (2x0, x0) · · ·
σ(k−2)x0

(f (x0)) τ ((k − 2)x0, x0) f (x0) ∈ nil (R) .

⇒ f (x0) f (x0)σx0 (f (x0)) τ (x0, x0)σ2x0 (f (x0)) τ (2x0, x0) · · ·
σ(k−2)x0

(f (x0)) τ ((k − 2)x0, x0) ∈ nil (R) .

Since R is NI and τ (x, y) ∈ U(R), we get

(f (x0))
2 σx0 (f (x0)) τ (x0, x0)σ2x0 (f (x0)) τ (2x0, x0) · · ·

σ(k−2)x0
(f (x0)) ∈ nil (R) .
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Since R is S-compatible NI ring, we have

(f (x0))
2 σx0 (f (x0)) τ (x0, x0)σ2x0 (f (x0)) τ (2x0, x0) · · ·

σ(k−3)x0
(f (x0)) τ ((k − 3)x0, x0) f (x0) ∈ nil (R) .

⇒ (f (x0))
3 σx0 (f (x0)) τ (x0, x0)σ2x0 (f (x0)) τ (2x0, x0) · · ·

σ(k−3)x0
(f (x0)) τ ((k − 3)x0, x0) ∈ nil (R) .

=⇒ · · · =⇒ f (x0) ∈ nil (R) .

Now suppose that p ∈supp(f) is such that for any u ∈supp(f) with u<p, f (u) ∈ nil (R)
for u ∈supp(f). We will show that f (p) ∈ nil (R). For convenience, we write

Xkp (f, . . . , f) = {(u1, . . . , uk) ∈ S × · · · × S| u1 + . . .+ uk = kp, f (ui) 6= 0, 1 ≤ i ≤ k} ,

as
{(p, p, . . . , p)} ∪ {(ui1 , ui2 , . . . , uik) |i = 2, 3, . . . ,n}

and for each
(ui1 , ui2 , . . . , uik) ∈ {(ui1 , ui2 , . . . , uik) |i = 2, 3, . . . ,n} ,

there exists some 1 ≤ l ≤ k such that uil 6= p. We show that for each

(ui1 , ui2 , . . . , uik) ∈ {(ui1 , ui2 , . . . , uik) |i = 2, 3, . . . ,n}

there exists some 1 ≤ t ≤ k such that uit<p. If uil<p, then we are done. So we may assume
that uil > p. If for all 1 ≤ j ≤ k, and j 6= l, uij ≥ p, then kp<ui1 + ui2 + . . .+ uik = kp, a
contradiction. Thus for each

(ui1 , ui2 , . . . , uik) ∈ {(ui1 , ui2 , . . . , uik) |i = 2, 3, . . . ,n}

there exists some 1 ≤ t ≤ k such that uit<p. Then, by induction hypothesis, we obtain
f (uit) ∈ nil (R). By Lemma 4, 1.f (uit) ∈ nil (R) implies 1.σs (f (uit)) = σs (f (uit)) ∈
nil (R) for each s ∈ S.

Set w = ui1 + . . .+ ui(k−1)
. From fk = 0, we have

0 = fk (kp)

= f (p)σp (f (p)) τ (p, p)σ2p (f (p)) τ (2p, p) · · ·σ(k−1)p (f (p)) τ ((k − 1) p, p)

+

(
n∑

i=2

f (ui1)σui1
(f (ui2)) τ (ui1 , ui2) · · ·σw (f (uik)) τ (w, uik)

)
.

Since R is NI, we get

f (ui1)σui1
(f (ui2)) τ (ui1 , ui2) · · ·σw (f (uik)) τ (w, uik) ∈ nil (R)

for all 2 ≤ i ≤ n.
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Then

−

(
n∑

i=2

f (ui1)σui1
(f (ui2)) τ (ui1 , ui2) · · ·σw (f (uik)) τ (w, uik)

)
= f (p)σp (f (p)) τ (p, p)σ2p (f (p)) τ (2p, p) · · ·σ(k−1)p (f (p)) τ ((k − 1) p, p) ∈ nil (R) .

Hence

f (p)σp (f (p)) τ (p, p)σ2p (f (p)) τ (2p, p) · · ·
σ(k−1)p (f (p)) τ ((k − 1) p, p) f (p) ∈ nil (R) .

Since τ (u, v) is invertible,

f (p)σp (f (p)) τ (p, p)σ2p (f (p)) τ (2p, p) · · ·
σ(k−2)p (f (p)) τ ((k − 2) p, p) f (p) ∈ nil (R) .

By Lemma 4, since R is an S-compatible, we have

(f (p))2 σp (f (p)) τ (p, p)σ2p (f (p)) τ (2p, p) · · ·
σ(k−2)p (f (p)) τ ((k − 2) p, p) ∈ nil (R) .

By continuing applying the same procedure, we get

f (p) ∈ nil (R) ,

for any p ∈supp(f)
Therefore, f (s) ∈ nil (R) for all s ∈ S.
(⇐) Assume that f (s) ∈ nil (R) for all s ∈supp(f). Then, by Lemma 4, 1.f (s) ∈

nil (R) implies 1.σx (f (s)) ∈ nil (R) for all x ∈ S. Since nil (R) is nilpotent, there exists
some positive integer k such that (nil (R))k = 0. Now we show that fk = 0. For every
y ∈supp

(
fk
)
, we write

{(u1, . . . , uk) ∈ S × · · · × S|u1 + . . .+ uk = y, f (ui) 6= 0, 1 ≤ i ≤ k}

as
{(ui1 , ui2 , . . . , uik) |i = 1, 2, . . . ,n} .

Then we have

fk (y) =
n∑

i=1

f (ui1)σui1
(f (ui2)) τ (ui1 , ui2) · · ·σw (f (uik)) τ (w, uik) .

Since, by assumption, for any 1 ≤ i ≤ n, we have

f (ui1)σui1
(f (ui2)) τ (ui1 , ui2) · · ·σw (f (uik)) τ (w, uik) ∈ (nil (R))k = 0.

Thus fk (y) = 0 for any y ∈supp
(
fk
)
. Hence fk = 0 for some positive integer k. Therefore,

f ∈ nil (A).

Now, according to Proposition 1, we can derive the following Corollary:
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Corollary 5. Let (S,≤) be a strictly totally ordered monoid and R an S-compatible NI
ring with nil (R) nilpotent. Then

(i) A =
[[
RS,≤;σ, τ

]]
is an NI ring.

(ii) nil (A) =
[[

nil (R)S,≤ ;σ, τ
]]
.

It was proved in [16] that: If R is a right noetherian NI ring, (S,≤) a strictly totally or-
dered monoid, σ : S → End(R) a compatible monoid homomorphism, and f ∈

[[
RS,≤;σ

]]
.

Then f ∈ nil
([[
RS,≤;σ

]])
if and only if f (s) ∈ nil (R) for all s ∈ S. Hence the following

Corollary is a generalization of the mentioned Ouyang’s result.

Corollary 6. Let (S,≤) be a strictly totally ordered monoid, R an S-compatible right
noetherian NI ring. Then f ∈ nil

([[
RS,≤;σ

]])
if and only if f (s) ∈ nil (R) for every

s ∈ S.

Proof. Since R is a right noetherian NI ring, by Levitzki’s Theorem [10], nil (R) is
nilpotent. Then the result follows from Proposition 1.

If we set τ (u, v) = 1 for all u, v ∈ S and σ : S → End(R) be a monoid homomorphism,
we get the results of [16] as corollaries from Proposition 1 as follows:

Corollary 7. ([16], Proposition 5) Let (S,≤) be a strictly totally ordered monoid and R
an S-compatible NI ring with nil (R) nilpotent. Then f ∈ nil

([[
RS,≤;σ

]])
if and only if

f (s) ∈ nil (R) for every f ∈
[[
RS,≤;σ

]]
and s ∈ S.

Corollary 8. ([16], Corollary 6) Let (S,≤) be a strictly totally ordered monoid and R an
S-compatible NI ring with nil (R) nilpotent. Then we have:

(i)
[[
RS,≤;σ

]]
is an NI ring.

(ii) nil
([[
RS,≤;σ

]])
=
[[

nil (R)S,≤ ;σ
]]
.

It was proved in [19] that if R is a noetherian commutative ring, (S,≤) a cancellative
torsion-free strictly ordered monoid and f ∈

[[
RS,≤]], then f ∈ nil

([[
RS,≤]]) if and only

if f (s) ∈ nil (R) for all s ∈ S.
Note that if (S,≤) is a cancellative torsion-free strictly ordered monoid, then by Riben-

boim [20], there exists a compatible strict total order ≤′ on S, which is finer than ≤ (that
is, for all s, t ∈ S, s ≤ t implies s ≤′ t). Thus if we set τ (u, v) = 1 for all u, v ∈ S
and σs = IdR for all s ∈ S, we get directly the results of Ribenboim [19] as corollaries of
Proposition 1.

In [15], Ouyang introduced the notion of weak zip rings as follows:
Recall that a ring R is weak zip ring if NR(X) ⊆ nil(R) for a subset X of R, then there

exists a finite subset X0 ⊆ X such that NR(X0) ⊆ nil(R).
In the next Theorem we generalize the result due to Salem [22].
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Theorem 3. Let (S,≤) be a strictly totally ordered monoid and R an S-compatible NI
ring with nil (R) nilpotent. Then A =

[[
RS,≤;σ, τ

]]
is a weak zip ring if and only if R is

a weak zip ring.

Proof. Suppose that A =
[[
RS,≤;σ, τ

]]
is a weak zip ring and X ⊆ R such that

NR (X) ⊆ nil (R). Let Y = {cx ∈ A|x ∈ X} ⊆ A and 0 6= f ∈ NA (Y ). Then cxf ∈ nil (A)
for each cx ∈ Y and x ∈ X. Using Proposition 1, we get

(cxf) (u) = xσ0 (f (u)) τ (0, u) ∈ nil (R)

for each u ∈ supp (f) and x ∈ X. Hence xf (u) ∈ nil (R) for each u ∈ supp (f) and x ∈ X.
Therefore f (u) ∈ NR (X) ⊆ nil (R) for each u ∈ supp (f). Then, using proposition 1
again, f ∈ nil (A). Therefore NA (Y ) ⊆ nil (A). Since A is a weak zip ring, there exists
a finite subset Y0 ⊆ Y such that NA (Y0) ⊆ nil (A), where Y0 = {cxi |i = 1, . . . ,n} and
X0 = {xi|i = 1, . . . ,n} ⊆ X. Let f ∈ NA (Y0), then cxif ∈ nil (A). From Proposition 1,
we have

(cxif) (u) = xiσ0 (f (u)) τ (0, u) = xif (u) ∈ nil (R) for each u ∈ supp (f) and xi ∈ X0 .

Thus NR (X0) =
⋃

f∈NA(Y0)

{f (u) |u ∈ supp (f)} ⊆ nil (R) .Therefore R is a weak zip ring.

Conversely, assume that R is a weak zip ring and Y ⊆ A such that NA (Y ) ⊆ nil (A).
Let T = C (Y ) ⊆ R and a ∈ NR (T ), then f (u) a ∈ nil (R) for each f ∈ Y and u ∈ S.
Since R is an S-compatible NI ring, we have

f (u)σu (a) τ (u, 0) ∈ nil (R)⇒ f (u)σu (ca (0)) τ (u, 0) ∈ nil (R)

⇒ (fca) (u) ∈ nil (R) for each f ∈ Y and u ∈ S.

Using Proposition 1, we get fca ∈ nil (A). Hence ca ∈ NA (Y ) ⊆ nil (A). Therefore, by
using Proposition 1 again, it follows that a ∈ nil (R) and we have NR (T ) ⊆ nil (R) for
T ⊆ R. Since R is a weak zip ring, there exists a finite subset T0 ⊆ T such that NR (T0) ⊆
nil (R). Hence, for each t ∈ T0, there exists ft ∈ Y such that t ∈ {ft (u) |u ∈ supp (ft)}.
Let Y0 be a minimal subset of Y such that ft ∈ Y0 for each t ∈ T0. It is clear that Y0 is a
finite subset of Y . Let T1 = C (Y0). Hence T0 ⊆ T1 and by Lemma 3, we have

NR (T1) ⊆ NR (T0) ⊆ nil (R) .

Suppose that g ∈ NA (Y0), then ftg ∈ nil (A) for each ft ∈ Y0. Using Proposition 1, we
have (ftg) (w) ∈ nil (R) for each w ∈ supp (ftg) ⊆ supp (ft) + supp (g). We use transfinite
induction to show that ft (u) g (v) ∈ nil (R). Since supp (ft) and supp (g) are well ordered
subsets of a totally ordered sets, let u0 and v0 be their minimal elements respectively.
Thus

(ftg) (u0 + v0) = ft (u0)σu0 (g (v0)) τ (u0, v0) +
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(ui,vi)∈Xu0+v0 (f,g)\{(u0,v0)}

ft (ui)σui (g (vi)) τ (ui, vi)

where, ui > u0 and vi > v0 for some i. Therefore u0+v0<ui+v0 = u0+v0 a contradiction.
Thus u0 = ui for each i. Similarly, v0 = vi for each i. Therefore by Proposition 1, we have

(ftg) (u0 + v0) = ft (u0)σu0 (g (v0)) τ (u0, v0) +∑
(ui,vi)∈Xu0+v0 (f,g)\{(u0,v0)}

ft (ui)σui (g (vi)) τ (ui, vi) ∈ nil (R)

(ftg) (u0 + v0) = f (u0)σu0 (g (v0)) τ (u0, v0)

Since R is an S-compatible NI ring, we have ft (u0) g (v0) ∈ nil (R). Thus g (v0) ∈
NR (ft (u0)) .

Suppose that ft (u) g (v) ∈ nil (R) for each u ∈ supp (ft) and v ∈ supp (g) such that
u + v<w ∈ supp (ftg). We will show that ft (u) g (v) is nilpotent for each u + v = w ∈
supp (ftg). So it follows that g (vi) ∈ NR (ft (ui)) ⊆ nil (R). For each w ∈ supp (ftg) we
have

Xw (ft, g) = {(u, v) |u+ v = w|u ∈ supp (ft) , v ∈ supp (g)}

is a finite subset. Let
Xw (ft, g) = {(ui, vi) |i = 1, . . . ,n} .

Since (S,≤) is a totally ordered monoid, we can easily conclude that S is cancellative.
Assume that u1<u2< . . .<un if u1 = u2 and u1 + v1 = u2 + v2, then v1 = v2, and thus
(u1, v1) = (u2, v2). From the above ordering on ui and vi we get

(ftg) (w) =
∑

(u,v)∈Xw(f,g)

ft (u)σu (g (v)) τ (u, v)

(ftg) (w) =
n∑

i=1
ft (ui)σui (g (vi)) τ (ui, vi)

= ft (u1)σu1 (g (v1)) τ (u1, v1) + · · ·+ ft (un)σun (g (vn)) τ (un, vn)
(1)

By Proposition 1, (ftg) (w) =
n∑

i=1
ft (ui)σui (g (vi)) τ (ui, vi) ∈ nil (R). Note that u1 +

vi<ui+vi = w for each 2 ≤ i ≤ n. By induction hypothesis we have, ft (u1) g (vi) ∈ nil (R)
for each 2 ≤ i ≤ n, and sinceR is σ-compatible NI ring, ft (u1)σu1 (g (vi)) τ (u1, vi) ft (u1) ∈
nil (R) for each 2 ≤ i ≤ n. From Equation 1, we have

ft (u1)σu1 (g (v1)) τ (u1, v1) = (ftg) (w)− ft (u2)σu2 (g (v2)) τ (u2, v2)− · · · (2)

−g (v1) ft (un)σun (g (vn)) τ (un, vn) ∈ nil (R)

Multiply Equation 2 from the left side by g (v1) it follows that:

g (v1) ft (u1)σu1 (g (v1)) τ (u1, v1) = g (v1) (ftg) (w)−
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g (v1) ft (u2)σu2 (g (v2)) τ (u2, v2)− · · · − g (v1) ft (un)σun (g (vn)) τ (un, vn) ∈ nil (R)

Since R is an NI ring, it follows that g (v1) ft (u1)σu1 (g (v1)) τ (u1, v1) ∈ nil (R). Since
R is an S-compatible NI ring. Then g (v1) ft (u1) ∈ nil (R) and it follows that g (v1) ∈
NR (ft (u1)) ⊆ nil (R).

From Equation 1, we have

ft (u2)σu2 (g (v2)) τ (u2, v2) = (ftg) (w)− ft (u1)σu1 (g (v1)) τ (u1, v1) (3)

−ft (u3)σu3 (g (v3)) τ (u3, v3) · · · − ft (un)σun (g (vn)) τ (un, vn) ∈ nil (R)

Multiply Equation 3 from the left by g (v2), we obtain g (v2) ft (u2) ∈ nil (R) by the
same way as above. Continuing this process, we prove that g (vi) ft (ui) ∈ nil (R) for each
ui ∈ supp (ft) and vi ∈ supp (g) for all 1 ≤ i ≤ n. Consequently, g (vi) ft (ui) ∈ nil (R) for
all 1 ≤ i ≤ n and thus g (v) ∈ NR (T1) ⊆ nil (R) for each v ∈ supp (g). Thus g ∈ nil (A)
by Proposition 1. Hence NA (Y0) ⊆ nil (A) and it follows that A is a weak zip ring.

Corollary 9. Let (S,≤) be a strictly totally ordered monoid and R an S-compatible right
noetherian NI ring. Then A is a weak zip ring if and only if R is a weak zip ring.

Proof. Since R is a right noetherian NI ring, by Levitzki’s Theorem [10], nil (R) is
nilpotent. Then the result follows from Theorem 3.

As special cases of the construction of the (σ, τ)− generalized power series ring A, we
get some results of ([22] and [23]) as corollaries.

If τ (u, v) = 1 for all u, v ∈ S and σ : S −→ End (R) a monoid homomorphism for all
s ∈ S, by Theorem 3 and Corollary 9, we get

Corollary 10. ([22], Theorem 3.10) Let (S,≤) be a strictly totally ordered monoid and
R is an S-compatible NI ring with nil (R) nilpotent. Then

[[
RS,≤;σ

]]
is a weak zip ring

if and only if R is a weak zip ring.

Corollary 11. ([22], Theorem 3.10) Let (S,≤) be a strictly totally ordered monoid and
R is a right Noetherian, S-compatible NI ring. Then

[[
RS,≤, σ

]]
is a weak zip ring if and

only if R is a weak zip ring.

If we set τ (u, v) = 1 for all u, v ∈ S and σ (s) = IdR for all s ∈ S, we have the
following:

Corollary 12. ([23], Theorem 3.5) Let R be a semicommutative right Noetherian ring,
(S,≤) a strictly totally ordered monoid. Then R is a weak zip ring if and only if [[RS,≤]]
is a weak zip ring.

Proof. Since R is semicommutative, nil (R) is an ideal by [11]. Therefore R is an NI
ring. Hence the result follows by Corollary 9.
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