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Abstract. For a differential k-form ω on a complete non-compact manifold, we establish an equiv-
alent relation between a harmonic form and a closed co-closed form. We extend this equivalence
from ω in L2 spaces to ω with 2-balanced growth including L2 spaces and non-L2 spaces. Espe-
cially for a simple differential k-form ω̄ on a complete non-compact manifold, we generalize this
equivalence from ω̄ in Lq spaces to ω̄ with 2-balanced growth including Lq spaces and non-Lq

spaces for 2 ≤ q < 3. Our research findings recapture the work of Andreotti and Vesentini. Our
ideas and calculation methods in this paper could provide a new way of broadening Lq spaces to
non-Lq spaces in a variety of energy for differential forms.
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1. Introduction

The study of a differential form ξ on a manifold has been one of the most active research
topics in mathematical history. ξ can be classified according to different properties in the
following directions:

(i) We can classify ξ by analyzing its vanishing properties in regard to an exterior
differential operator d and/or an exterior co-differential operator d∗ on a manifold
M . For example, we define ξ as a closed form (i.e. dξ = 0), a co-closed form (i.e.
d∗ξ = 0), a harmonic form (i.e. 4ξ = −(dd∗+d∗d)ξ = 0), a p-pseudo-co-closed form
(i.e. d∗(|ξ|p−2ξ) = 0 for p > 1) and others.
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(ii) We can classify ξ by estimating its energy on a manifold M . Basically we define
ξ with finite q-energy to be in Lq space (i.e.

∫
M |ξ|

qdv < ∞) or ξ with infinite
q-energy to be in non-Lq space (i.e.

∫
M |ξ|

qdv = ∞) for some real number q > 0.
Furthermore, various energy growths for ξ can be defined in broad spaces which
consist of both Lq and non-Lq spaces. For example, definitions of p-balanced growth
(including p-finite growth, p-mild growth, p-obtuse growth, p-moderate growth, and
p-small growth) and its counter-part p-imbalanced growth (including respectively p-
infinite growth, p-severe growth, p-acute growth, p-immoderate growth, and p-large
growth) can be found in Wei-Li-Wu’s[7] work. Spaces defined by p-balanced growth
contain Lq spaces and extend from Lq spaces to Non-Lq spaces. The Liouville-type
theorems for ξ (i.e. ξ ≡ constant) and the vanishing theorems for ξ (i.e. ξ ≡ 0) were
studied in Lq spaces by Zhang[12] in 2001. Recently, Wu and Li[10] extended the
Liouville-type results for ξ from Lq spaces to broader spaces with p-balanced growth.

(iii) We can classify ξ by studying its manifold on either a compact manifold M̄ or a com-
plete non-compact manifold M . The theory of ξ on M̄ has been almost completed
and studied intensively by mathematicians in history. Compared with the theory of
ξ on M̄ , the theory of ξ on M has been actively studied. Currently, mathematicians
are spending more time on studying this challenging research theory of ξ on M .

In particular, the theory of a harmonic form ξ (i.e. 4ξ = 0) has been a very popular
and challenging research topic for mathematicians. On a compact manifold M̄ , the equiv-
alence between a harmonic form and a closed co-closed form is a well-known finding from
the Stokes’ Theorem. However, on a complete non-compact manifold M , the equivalence
is not always true. In 1965, Andreotti and Vesentini[2] proved this equivalent relation
when a harmonic form ξ has finite q-energy growth in Lq space for q = 2 on M . After
that, many mathematicians have expressed interests in studying a harmonic form with
finite q-energy in Lq spaces. In 1981, Greene and Wu[3] explored the vanishing theorem
for a harmonic 1-form in Lq space on M with non-negative Ricci curvature. In 2015,
Wei and Wu[8] generalized the vanishing theorem for a harmonic form from Lq space to a
broader space with p-balanced growth for p = 2, which includes both Lq and non-Lq spaces.

In this paper, for a differential k-form ω on a complete non-compact manifold, we
establish an equivalent relation between a harmonic form (i.e. 4ω = 0) and a closed
co-closed form (i.e. dω = d∗ω = 0), that is:

4ω = 0⇐⇒ dω = d∗ω = 0 (1)

where ω has 2-balanced growth of

lim inf
r→∞

∫
B(x;r) |ω|

qdv

r2
<∞ (i.e. 2-finite growth) (2)

and q denotes a real number specified in the context when it is used. First, we extend
this equivalence from ω in L2 spaces to ω with 2-balanced growth (2) for q = 2 including
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both L2 spaces and non-L2 spaces. Furthermore, we verify this equivalence from ω in Lq

spaces to ω with 2-balanced growth (2) including both Lq spaces and non-Lq spaces for
2 < q < 3 when ω satisfies

〈d|ω|2 ∧ ω, dω〉 ≤ 2|ω|2|dω|2. (3)

In addition, especially for a simple differential k-form ω̄, we broaden this equivalence from
ω̄ in Lq spaces to ω̄ with 2-balanced (2) including both Lq spaces and non-Lq spaces for
2 ≤ q < 3. In particular, we recapture the work of Andreotti and Vesentini. Our research
ideas and calculation methods in this paper can provide a new way of working on a dif-
ferential form with a variety of energy in broader spaces.

2. Materials and Methods

In this section, we will give definitions of a harmonic form, a closed form, and a co-
closed form on a complete non-compact manifold as the basic knowledge. In our study, an
assumption of energy growth (2) satisfies the definition of p-finite growth for p = 2 as one
of the five cases of p-balanced growth for a differential form ξ. In addition, we will give
Lemma 1 as well as its proof. We have applied this lemma for proving the main theorems
in Section 3.

2.1. Preliminary

Throughout this paper, we assume that M is a complete non-compact n-manifold
with volume element dv . We denote the geodesic ball of radius r centered at x0 in M
by B(x0; r) or B(r) , and its boundary by ∂B(x0; r) or ∂B(r) . Let ξ : V → M be a
vector bundle over M . Set Ak(ξ) = Γ(∧kT ∗M ⊗ V ) the space of smooth k-forms ξ on M
with values in the vector bundle and let d : Ak(ξ) → Ak+1(ξ) be the exterior differential
operator and d∗ : Ak(ξ)→ Ak−1(ξ) be its co-differential operator given by

d∗ = (−1)nk+n+1 ? d?

where ? : Ak → An−k is linear with respect to multiplication by functions. In particular, if
ν ∈ A1(ξ), d∗ is defined by d∗ν = −trace∇ν = −divν. The Hodge Laplacian ∆ is defined
on the V -valued differential forms by

∆ = −(dd∗ + d∗d) : Ak(V )→ Ak(V )

Thus, by our convention, in the space of smooth real-valued functions f on M , the Hodge
Laplacian agrees with the connection Laplacian, or the Laplace-Beltrami operator; that
is,

∆f = −d∗df = trace∇df = div(∇f) .

More details can be found in [9].
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Definition 1. A differential k-form ξ is said to be harmonic if ∆ξ = −(dd∗ + d∗d)ξ = 0 ,
closed if dξ = 0 , and co-closed if d∗ξ = 0 .

Definition 2. A differential form ξ of degree k is called a simple differential k-form if
there are differential 1-forms ξ1, · · · , ξk such that ξ = ξ1 ∧ · · · ∧ ξk.

We recall the definition of p-balanced growth as follows (cf.[7, 6]):

Definition 3. A function or a differential form f has p-finite growth (or, is p-finite) if
there exists x0 ∈M such that

lim inf
r→∞

1

rp

∫
B(x0;r)

|f |qdv <∞

and has p-infinite growth (or, is p-infinite) otherwise.

A function or a differential form f has p-mild growth (or, is p-mild) if there exist
x0 ∈M , and a strictly increasing sequence of {rj}∞0 going to infinity, such that for every
l0 > 0, we have

∞∑
j=`0

(
(rj+1 − rj)p∫

B(x0;rj+1)\B(x0;rj)
|f |qdv

) 1
p−1

=∞ ,

and has p-severe growth (or, is p-severe) otherwise.

A function or a differential form f has p-obtuse growth (or, is p-obtuse) if there exists
x0 ∈M such that for every a > 0, we have∫ ∞

a

(
1∫

∂B(x0;r)
|f |qds

) 1
p−1

dr =∞ ,

and has p-acute growth (or, is p-acute) otherwise.

A function or a differential form f has p-moderate growth (or, is p-moderate) if there
exist x0 ∈M , and F (r) ∈ F ,such that

lim sup
r→∞

1

rpF p−1(r)

∫
B(x0;r)

|f |qdv <∞ ,

and has p-immoderate growth (or, is p-immoderate) otherwise, where

F = {F : [a,∞) −→ (0,∞)|
∫ ∞
a

dr

rF (r)
=∞ for some a ≥ 0} .

(Notice that the functions in F are not necessarily monotone.)

A function or a differential form f has p-small growth (or, is p-small) if there exists
x0 ∈M , such that for every a > 0 ,we have∫ ∞

a

(
r∫

B(x0;r)
|f |qdv

) 1
p−1

dr =∞ ,

and has p-large growth (or, is p-large) otherwise.
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In Definition 3, q denotes a real number whose value will be specified in the context
in which Definition 3 is used.

ω satisfying the energy assumption of

lim inf
r→∞

∫
B(x;r) |ω|

qdv

r2
<∞

is p-finite for p = 2. In particular, we see that ω in Lq space (i.e.
∫
M |ω|

qdv < ∞) must

satisfy lim inf
r→∞

∫
B(x;r) |ω|

qdv

r2
= 0 <∞.

2.2. Lemma

We begin with the following lemma:

Lemma 1. Suppose ω is a differential k-form on an n-dimensional manifold M . Then,
for any f differentiable on M , we have

d∗(fω) = fd∗ω + (−1)nk+n+1 ? (df ∧ ?ω) (4)

Proof.

d∗(fω) = (−1)nk+n+1 ? d ? (fω)
= (−1)nk+n+1 ? d(f ? ω)
= (−1)nk+n+1 ? (fd ? ω + df ∧ ?ω)
= f(−1)nk+n+1 ? d ? ω

+(−1)nk+n+1 ? (df ∧ ?ω)
= fd∗ω + (−1)nk+n+1 ? (df ∧ ?ω)

where we apply the definition of d∗ given by d∗ = (−1)nk+n+1 ? d?.

3. Results of Main Theorems

In this section, we will provide proofs of our main results in details. Three theorems
will be stated.

Theorem 1. On a complete non-compact manifold M , a differential k-form ω with 2-finite
growth of

lim inf
r→∞

∫
B(x;r) |ω|

qdv

r2
<∞

for q = 2, is harmonic if and only if ω is closed and co-closed. In particular, a differential
k-form in L2 space is harmonic if and only if it is closed and co-closed.

Proof. (⇐) It is obvious that ω is harmonic if ω is both closed and co-closed.
(⇒) Now we need to prove that ω is both closed and co-closed if ω is harmonic. Choose
a smooth cut-off function ψ(x) as in [5, (3.1)], i.e. for any x0 ∈ M and any pair of
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positive numbers s, t with 0 < s < t , a rotationally symmetric Lipschitz continuous
non-negative function ψ(x) = ψ(x; s, t) satisfies ψ ≡ 1 on B(s), ψ ≡ 0 off B(t) , and
|∇ψ| ≤ C1

t−s , a.e. on B(t)\B(s) , where C1 > 0 is a constant (independent of x0, s, t). By
the harmonicity of ω , and the adjoint relationship of d and d∗ on differential forms with
compact support, and applying Lemma 1 for d∗(ψ2ω) in which f = ψ2, we have:

0 =
∫
B(t)〈ψ

2ω,∆ω〉dv
=

∫
B(t)−〈ψ

2ω, d∗dω〉 − 〈ψ2ω, dd∗ω〉dv
=

∫
B(t)−〈d(ψ2ω), dω〉dv −

∫
B(t)〈d

∗(ψ2ω), d∗ω〉dv
=

∫
B(t)−〈2ψdψ ∧ ω + ψ2dω, dω〉dv
−
∫
B(t)〈(−1)nk+n+1 ? (dψ2 ∧ ?ω), d∗ω〉dv

−
∫
B(t) ψ

2|d∗ω|2dv
= I + II + III.

(5)

I ≤
∫
B(t)\B(s) 2ψ|dψ||ω||dω|dv −

∫
B(t) ψ

2|dω|2dv
≤ 2(

∫
B(t)\B(s) |dψ|

2|ω|2dv)
1
2 (
∫
B(t)\B(s) ψ

2|dω|2dv)
1
2 −

∫
B(t) ψ

2|dω|2dv
(6)

where we have used a generalized Hadmard Theorem |dψ ∧ ω| ≤ |dψ||ω|, and Cauchy-
Schwarz inequality (applied to

∫
B(t)\B(s) ψ|dψ||ω||dω|dv ). Similarly, we have the following

estimates involved with the codifferential operator d∗ :

II ≤ 2
∫
B(t)\B(s) ψ|ω||dψ||d

∗ω|dv

≤ 2
( ∫

B(t)\B(s) |dψ|
2|ω|2dv

) 1
2
( ∫

B(t)\B(s) ψ
2|d∗ω|2dv

) 1
2

(7)

where in the first step we have used

|(−1)nk+n+1 ? (dψ2 ∧ ?ω)| = |dψ2 ∧ ?ω| ≤ |dψ2|| ? ω| = 2ψ|dψ||ω| (8)

and in the second step we have applied Cauchy-Schwarz inequality to
∫
B(t)\B(s) ψ|ω||dψ||d

∗ω|dv.
Substituting (6) and (7) into (5), we obtain the following inequality:∫

B(t)
ψ2|dω|2dv +

∫
B(t)

ψ2|d∗ω|2dv

≤ 2
( ∫

B(t)\B(s)
|dψ|2|ω|2dv

) 1
2 · {

( ∫
B(t)\B(s)

ψ2|dω|2dv
) 1

2 +
( ∫

B(t)\B(s)
ψ2|d∗ω|2dv

) 1
2 }

≤ 2
√

2
( ∫

B(t)\B(s)
|dψ|2|ω|2dv

) 1
2 ·
( ∫

B(t)\B(s)
ψ2(|dω|2 + |d∗ω|2)dv

) 1
2 (9)

where in the last step we have used

a
1
2 + b

1
2 ≤
√

2(a+ b)
1
2 for a, b ≥ 0

in which

a =

∫
B(t)\B(s)

ψ2|dω|2dv and
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b =

∫
B(t)\B(s)

ψ2|d∗ω|2dv.

Hence, ∫
B(t) ψ

2(|dω|2 + |d∗ω|2)dv

≤ 2
√

2
( ∫

B(t)\B(s) |dψ|
2|ω|2dv

) 1
2 ·
( ∫

B(t)\B(s) ψ
2(|dω|2 + |d∗ω|2)dv

) 1
2

≤ 2
√
2C1
t−s

( ∫
B(t)\B(s) |ω|

2dv
) 1

2 ·
( ∫

B(t)\B(s) ψ
2(|dω|2 + |d∗ω|2)dv

) 1
2

(10)

Let {rj} be a strictly increasing sequence of positive real numbers going to infinity and
define:

Aj = 1
r2j

∫
B(rj)

|ω|2dv
ϕj(x) = ψ(x; rj , rj+1)
Qj+1 =

∫
B(rj+1)

ϕ2
j (|dω|2 + |d∗ω|2)dv

C = (2
√

2C1)
2.

(11)

Using the above notations, substituting s = rj , t = rj+1 and ψ = ϕj into (10), and
squaring both sides of (10), via 0 ≤ ϕj−1 ≤ ϕj , we have,

Q2
j+1 ≤ C

(
r2j+1Aj+1−r2jAj

(rj+1−rj)2

)(
Qj+1 −Qj

)
(12)

We claim that Qj → 0 as j → ∞. Choosing {rj} such that rj+1 ≥ 2rj (that is,
rj+1 − rj ≥ 1

2rj+1), then:

r2j+1Aj+1 − r2jAj
(rj+1 − rj)2

≤ 4Aj+1 (13)

It follows from (12) and (13) that

0 ≤ Qj+1 ≤ 4CAj+1. (14)

Now we use the assumption that ω satisfies (2) for q = 2, there exists a constant K > 0 ,
and a sequence {rj} with rj+1 ≥ 2rj , such that Aj+1 ≤ K . It follows from (14) that
{Qj+1(≤ 4CK)} is an increasing sequence. In (12), summing over j, we have for ∀N > 1 ,

N∑
j=1

Q2
j+1 ≤ 4CK(QN+1 −Q1) ≤ 16C2K2.

Therefore, Qj → 0 as j →∞ , which indicates
∫
M |dω|

2dv =
∫
M |d

∗ω|2dv = 0. This shows
that dω = 0 and d∗ω = 0 almost everywhere. By the continuity, dω = d∗ω = 0 on M .
In particular, a differential k-form in L2 space is harmonic if and only if it is closed and
co-closed.



L. Wu, Y. Li / Eur. J. Math. Sci., 3 (1) (2017), 1-13 8

Theorem 2. On a complete non-compact manifold M , a differential k-form ω satisfying:

〈d|ω|2 ∧ ω, dω〉 ≤ 2|ω|2|dω|2

and

lim inf
r→∞

∫
B(x;r) |ω|

qdv

r2
<∞,

(i.e. 2-finite growth) for 2 < q < 3, is harmonic if and only if ω is closed and co-closed. In
particular, a differential k-form in Lq for 2 < q < 3 satisfying 〈d|ω|2 ∧ω, dω〉 ≤ 2|ω|2|dω|2
is harmonic if and only if it is closed and co-closed.

Proof. (⇐) It is obvious that ω is harmonic if ω is both closed and co-closed.
(⇒) Now we need to prove that ω is both closed and co-closed if ω is harmonic. Choose
a smooth cut-off function ψ(x) as in [5, (3.1)], i.e. for any x0 ∈ M and any pair of
positive numbers s, t with 0 < s < t , a rotationally symmetric Lipschitz continuous
non-negative function ψ(x) = ψ(x; s, t) satisfies ψ ≡ 1 on B(s), ψ ≡ 0 off B(t) , and
|∇ψ| ≤ C1

t−s , a.e. on B(t)\B(s) , where C1 > 0 is a constant (independent of x0, s, t).

For m > 2, we have
∫
B(t)〈ψ

2(|ω|2 + ε)
m
2
−1ω,∆ω〉dv = 0 due to the harmonicity of ω .

Meanwhile, by the adjoint relationship of d and d∗ on differential forms with compact
support, and applying Lemma 1 for d∗(ψ2(|ω|2 + ε)

m
2
−1ω) in which f = ψ2(|ω|2 + ε)

m
2
−1,

we have for any constant ε > 0 ,

0 =
∫
B(t)〈ψ

2(|ω|2 + ε)
m
2
−1ω,∆ω〉dv

=
∫
B(t)−〈ψ

2(|ω|2 + ε)
m
2
−1ω, d∗dω〉 − 〈ψ2(|ω|2 + ε)

m
2
−1ω, dd∗ω〉dv

=
∫
B(t)−〈d(ψ2(|ω|2 + ε)

m
2
−1ω), dω〉dv −

∫
B(t)〈d

∗(ψ2(|ω|2 + ε)
m
2
−1ω), d∗ω〉dv

=
∫
B(t)−〈2ψ(|ω|2 + ε)

m
2
−1dψ ∧ ω + ψ2d(|ω|2 + ε)

m
2
−1 ∧ ω + ψ2(|ω|2 + ε)

m
2
−1dω, dω〉dv

−
∫
B(t) ψ

2(|ω|2 + ε)
m
2
−1|d∗ω|2dv

−
∫
B(t)〈(−1)nk+n+1 ? (d(ψ2(|ω|2 + ε)

m
2
−1) ∧ ?ω), d∗ω〉dv

= I + II + III
(15)

Since m > 2,

I ≤
∫
B(t)\B(s) 2ψ(|ω|2 + ε)

m−1
2 |dψ||dω|dv

+
∫
B(t) |m− 2|ψ2(|ω|2 + ε)

m
2
−1|dω|2dv

−
∫
B(t) ψ

2(|ω|2 + ε)
m
2
−1|dω|2dv

≤ 2
( ∫

B(t)\B(s) |dψ|
2(|ω|2 + ε)

m
2 dv

) 1
2

·
( ∫

B(t)\B(s) ψ
2(|ω|2 + ε)

m
2
−1|dω|2dv

) 1
2

+(|m− 2| − 1)
∫
B(t) ψ

2(|ω|2 + ε)
m
2
−1|dω|2dv

(16)

where we have used a generalized Hadmard Theorem |dψ ∧ ω| ≤ |dψ||ω|, Cauchy-Schwarz

inequality (applied to
∫
B(t)\B(s) ψ(|ω|2+ε)

m−1
2 |dψ||dω|dv ), and (3) (applied to

∫
B(t)〈ψ

2d(|ω|2+
ε)

m
2
−1 ∧ ω, dω〉dv)

|〈d(|ω|2 + ε) ∧ ω, dω〉| = |〈d|ω|2 ∧ ω, dω〉| ≤ 2|ω|2|dω|2. (17)
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Similarly, we have the following estimates involved with the co-differential operator d∗ :

II + III ≤ −
∫
B(t) ψ

2(|ω|2 + ε)
m
2
−1|d∗ω|2dv

+|
∫
B(t)〈d(ψ2(|ω|2 + ε)

m
2
−1) ∧ ?ω, ?d∗ω〉dv|

≤ −
∫
B(t) ψ

2(|ω|2 + ε)
m
2
−1|d∗ω|2dv

+
∫
B(t)\B(s) |〈2ψ(|ω|2 + ε)

m
2
−1dψ ∧ ?ω, ?d∗ω〉|dv

+
∫
B(t) |

m
2 − 1|ψ2(|ω|2 + ε)

m
2
−2

·|〈d(|ω|2 + ε) ∧ ?ω, ?d∗ω〉|dv
≤ −

∫
B(t) ψ

2(|ω|2 + ε)
m
2
−1|d∗ω|2dv

+2
∫
B(t)\B(s) ψ(|ω|2 + ε)

m−1
2 |dψ||d∗ω|dv

+
∫
B(t) |m− 2|ψ2(|ω|2 + ε)

m
2
−1|d∗ω|2dv

≤ (|m− 2| − 1)
∫
B(t) ψ

2(|ω|2 + ε)
m
2
−1|d∗ω|2dv

+2
( ∫

B(t)\B(s) |dψ|
2(|ω|2 + ε)

m
2 dv

) 1
2

·
( ∫

B(t)\B(s) ψ
2(|ω|2 + ε)

m
2
−1|d∗ω|2dv

) 1
2

(18)

where we have used | ? ω| = |ω|, | ? d∗ω| = |d∗ω|, and in the last step we apply Cauchy-

Schwarz inequality to
∫
B(t)\B(s) ψ(|ω|2 + ε)

m−1
2 |dψ||d∗ω|dv , and in the last second step we

apply (3) for a differential form ?ω in
∫
B(t) |

m
2 −1|ψ2(|ω|2+ε)

m
2
−2·|〈d(|ω|2+ε)∧?ω, ?d∗ω〉|dv

to obtain:

|〈d(|ω|2 + ε) ∧ ?ω, ?d∗ω〉| = |〈d| ? ω|2 ∧ ?ω, ?((−1)nk+n+1 ? d ? ω)〉|
= |〈d| ? ω|2 ∧ ?ω, d ? ω〉|
≤ 2| ? ω|2|d ? ω|2
= 2|ω|2| ? d ? ω|2
= 2|ω|2|d∗ω|2.

(19)

Substituting (16) and (18) into (15), we obtain the following inequality:

(1− |m− 2|)
∫
B(t) ψ

2(|ω|2 + ε)
m
2
−1|dω|2dv

+(1− |m− 2|)
∫
B(t) ψ

2(|ω|2 + ε)
m
2
−1|d∗ω|2dv

≤ 2
( ∫

B(t)\B(s) |dψ|
2(|ω|2 + ε)

m
2 dv

) 1
2

·{
( ∫

B(t)\B(s) ψ
2(|ω|2 + ε)

m
2
−1|dω|2dv

) 1
2

+
( ∫

B(t)\B(s) ψ
2(|ω|2 + ε)

m
2
−1|d∗ω|2dv

) 1
2 }

≤ 2
√

2
( ∫

B(t)\B(s) |dψ|
2(|ω|2 + ε)

m
2 dv

) 1
2

·
( ∫

B(t)\B(s) ψ
2(|ω|2 + ε)

m
2
−1(|dω|2 + |d∗ω|2)dv

) 1
2

(20)

where in the last step we have applied the inequality

a
1
2 + b

1
2 ≤
√

2(a+ b)
1
2 for a, b ≥ 0
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in which

a =

∫
B(t)\B(s)

ψ2(|ω|2 + ε)
m
2
−1|dω|2dv and

b =

∫
B(t)\B(s)

ψ2(|ω|2 + ε)
m
2
−1|d∗ω|2dv .

We note that if 2 < m < 3

(1− |m− 2|)
∫
B(t) ψ

2(|ω|2 + ε)
m
2
−1(|dω|2 + |d∗ω|2)dv

≤ 2
√

2
( ∫

B(t)\B(s) |dψ|
2(|ω|2 + ε)

m
2 dv

) 1
2

·
( ∫

B(t)\B(s) ψ
2(|ω|2 + ε)

m
2
−1(|dω|2 + |d∗ω|2)dv

) 1
2

≤ 2
√
2C1
t−s

( ∫
B(t)\B(s)(|ω|

2 + ε)
m
2 dv

) 1
2

·
( ∫

B(t)\B(s) ψ
2(|ω|2 + ε)

m
2
−1(|dω|2 + |d∗ω|2)dv

) 1
2

(21)

Let {rj} be a strictly increasing sequence of positive real numbers going to infinity and
define:

Ãj(ε) = 1
r2j

∫
B(rj)

(|ω|2 + ε)
m
2 dv

ϕj(x) = ψ(x; rj , rj+1)

Q̃j+1(ε) =
∫
B(rj+1)

ϕ2
j (|ω|2 + ε)

m
2
−1(|dω|2 + |d∗ω|2)dv

C̃ = ( 2
√
2C1

1−|m−2|)
2

(22)

Using the above notations, substituting s = rj , t = rj+1 and ψ = ϕj into (21), and
squaring both sides of (21), via ϕj−1 ≤ ϕj we have,

Q̃2
j+1(ε) ≤ C̃

(
r2j+1Ãj+1(ε)−r2j Ãj(ε)

(rj+1−rj)2

)(
Q̃j+1(ε)− Q̃j(ε)

)
(23)

Now we let ε→ 0, then we claim that Q̃j → 0 as j →∞ where we define Q̃j := lim
ε→0

Q̃j(ε)

and Ãj := lim
ε→0

Ãj(ε). It is clear that Ãj = Ãj(0) < ∞ for every fixed j since Ãj(ε) is

monotonic as ε → 0 for m > 2 and the energy growth (2) for q = m and 2 < m < 3.
Ãj(ε)→ Ãj(0) = Ãj as ε→ 0 and Ãj <∞ as j →∞ due to the 2-finite growth for ω.

We have via (23),

Q̃j+1(ε) ≤
Q̃2
j+1(ε)

Q̃j+1(ε)− Q̃j(ε)

≤ C̃
r2j+1Ãj+1(ε)− r2j Ãj(ε)

(rj+1 − rj)2
. (24)

Choosing {rj} such that rj+1 ≥ 2rj (that is, rj+1 − rj ≥ 1
2rj+1), then:

r2j+1Ãj+1 − r2j Ãj
(rj+1 − rj)2

≤ 4Ãj+1
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Therefore,

Q̃j+1 = lim
ε→0

Q̃j+1(ε) ≤ lim
ε→0

C̃
r2j+1Ãj+1(ε)−r2j Ãj(ε)

(rj+1−rj)2

= C̃
r2j+1Ãj+1−r2j Ãj

(rj+1−rj)2

≤ 4C̃Ãj+1

< ∞.

(25)

Hence, let ε→ 0 in (23), we obtain

Q̃2
j+1 ≤ C̃

(
r2j+1Ãj+1 − r2j Ãj

(rj+1 − rj)2

)(
Q̃j+1 − Q̃j

)
. (26)

We have ω = 0 or dω = d∗ω = 0 on M , due to an argument similar to that in Theorem 1
via (2), (26), and q = m, 2 < q < 3.

Theorem 3. On a complete non-compact manifold M , a simple differential k-form ω̄ with
2-finite growth of

lim inf
r→∞

∫
B(x;r) |ω̄|

qdv

r2
<∞,

for 2 ≤ q < 3 is harmonic if and only if ω̄ is closed and co-closed. In particular, a simple
differential k-form ω̄ in Lq spaces for 2 ≤ q < 3 is harmonic if and only if ω̄ is closed and
co-closed.

Proof. We claim that inequality (3) is true for all simple differential k-forms. Indeed,
Let ω̄ = fdxi1 ∧ · · · ∧ dxik . Then |ω̄|2 = f2, d|ω̄|2 = 2fdf , dω̄ = df ∧ dxi1 ∧ dxi2 · · · ∧ dxik
and

〈d|ω̄|2 ∧ ω̄, dω̄〉 = 〈2fdf ∧ fdxi1 ∧ · · · ∧ dxik , dω̄〉
= 2f2〈dω̄, dω̄〉
= 2f2|dω̄|2
= 2|ω̄|2|dω̄|2.

(27)

Therefore, the proof follows at once from Theorems 1 and 2.

4. Discussion

In this section, we will compare our results with results obtained by other mathemati-
cians who have the same research interests. We discuss the significance of condition (3)
for any differential k-form in the proof of Theorem 2 and give a counter-example of (3)
(cf. Remark 1). Condition (3) as a necessary condition has been observed and mentioned
by other mathematicians in their research work such as Yau[11], Pigola, Rigoli, Setti[4],
Alexandru-Rugina[1] (cf. Remark 2). Our research findings have gone beyond the work of
Andreotti and Vesentini from L2 spaces to both Lq spaces and non-Lq spaces for 2 ≤ q < 3
(cf. Remark 3).
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Remark 1. (Counter-Example of (3)) Inequality (3) is not true in general. The following
is a counter-example: Let the differential 1-form ω = x1xndx1 + xndxn in Rn. Then
dω = −x1dx1 ∧ dxn, |ω|2 = (x21 + 1)x2n, d|ω|2 = 2x1x

2
ndx1 + 2(x21 + 1)xndxn, hence

〈d|ω|2 ∧ ω, dω〉 = 〈(2x1x3n − 2(x21 + 1)x1x
2
n)dx1 ∧ dxn, dω〉

= 〈
(
− 2x3n + 2(x21 + 1)x2n

)
dω, dω〉

= −2x3n|dω|2 + 2(x21 + 1)x2n|dω|2
= −2x3n|dω|2 + 2|ω|2|dω|2.

This reverses the sign “≤” in (3) as xn < 0.

Remark 2. Inequality (3) is necessary in the proof of the equivalence (1) in Lq spaces
for q 6= 2. This point is observed by Pigola-Rigoli-Setti[4, p.262, Remark B.8] who quote
Alexandru-Rugina[1] about Lq-harmonic k-forms on the hyperbolic space Hm

−1, m ≥ 3
which are neither closed and nor co-closed.

Remark 3. Equation (15) is treated in [11, p.664, (2.25)], except the term III =
−
∫
B(t)〈(−1)nk+n+1 ? (d(ψ2(|ω|2 + ε)

m
2
−1) ∧ ?ω), d∗ω〉dv . We provide a complete calcu-

lation in (15) and (18) involving the term III and the co-differential operator d? based on
Lemma 1. We extend the work of Andreotti and Vesentini[2] for L2 differential forms ω .

5. Conclusions

In this paper, we verify the equivalent relation between a harmonic form and a closed
co-closed form on a complete non-compact manifold, that is,

4ω = 0⇐⇒ dω = d∗ω = 0.

For a differential k-form ω, we extend this equivalence from ω in Lq spaces to ω with
2-balanced growth of

lim inf
r→∞

∫
B(x;r) |ω|

qdv

r2
<∞ (i.e. 2-finite growth)

including Lq and non-Lq spaces, where either q = 2 (cf. Theorem 1) or 2 < q < 3 with ω
satisfying

〈d|ω|2 ∧ ω, dω〉 ≤ 2|ω|2|dω|2

(cf. Theorem 2). For a simple differential k-form ω̄, we generalize this equivalence for ω̄
in Lq spaces for 2 ≤ q < 3 (cf. Theorem 3). Our research work recaptures prior work
related with the equivalence in Lq spaces from other mathematicians such as Andreotti
and Vesentini. Our ongoing research will be the study of this equivalent relationship in
the other 4 cases of p-balanced growth. Information gathered in this study could lead to
the future research on a differential form with all kinds of energy growth estimates.
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