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and A ,,(p,vy;t,[3). We obtain coefficient bounds, distortion theorem, extreme points, convolution
condition, convex combinations and integral operator for these classes.
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1. Introduction

A continuous complex valued functions f = u 4+ iv which is defined in a simply connected
complex domain 9 is said to be harmonic in 2 if both u and v are real harmonic in 2. In any
simply connected domain we can write

f(@) =h(z)+g(2), (1

where h and g are analytic in 2. We call h the analytic part and g the co-analytic part of f.
A necessary and sufficient condition for f to be locally univalent and sense-preserving in 9 is
that |1’ (z)| > |g'(z)| in @ (see [7]).

Let ./ denote the class of the functions f of the form:

f@ =2+ s,
k=2

which are analytic in the open unit disc U = {z : z € C and |z| < 1} and satisfy the normaliza-
tion condition f(0) = f’(0) —1=0.
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For1<[5§§andzeU,let

_ . 2f'(2)
/fl(fo’)—{f eA.Re{ 16 }<[3’},

_ , zf " (2)
HN(B)= {f eA.Re{H— o) }<[5}.

These classes .Z(3), #/(f3) were extensively studied by Uralegaddi et al. [19], see also Owa
and Srivastava [13], Porwal and Dixit [16] and Breaz [6].

Denote by &, the class of functions f of the form (1) that are harmonic univalent and
sense preserving in the unit disc U = {z : |2| < 1} for which f(0) = f,(0) — 1 = 0. For
f =h+g e ¥, we may express

and

F@ =2+ az*+> bk, |by| <1, 2)
k=2 k=1

where the analytic functions h and g are of the form:
o0 8]
h(Z)=Z+Zakzk, g(z):Zbkzk, |by| < 1. 3)
k=2 k=1

In 1984 Clunie and Sheil-Small [7] investigated the class ., as well as its geometric sub-
classes and obtained some coefficient bounds. Since then, there have been several related
papers on ¥, and its subclasses. For more basic results one may refer to the following stan-
dard introductory, Porwal [15, Chapter 5] defined the subclass ./, (8) C & consisting of
harmonic univalent functions f (z) satisfying the following condition:

. (@) - 4
Jﬂﬁo(ﬁ)—{f(z)éy’%:.Re (m) </3} (1</3§§,ZEU).

He proved that if f =h+ g, where h and g are given by (3) and if

N (k—ﬁ)| o (k+8) 4
ai | + |bk|51(1</55—), 4
2ol 2Ty 3
then f(2) € A ().
For g = 0 the class of () is reduced to the class .#(f8) studied by Uralegaddi et al.

[19].
The convolution of two functions of the from

(@) =5+ A (A > 0) and (=) =2+ ) s (g > 0), (5)
k=2 k=2
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is defined as -
(p#P)(&) =2+ ) At 25 = (3 % 9)(2), (6)
k=2
while the integral convolution is defined by

o A
(pOP)E) =2+ Y, 2 = (0p)(2) @
k=2

Motivated by the work of Ahuja [1], we consider the class . (p,;t,3,0) of functions of
the form (1) satisfying the condition

e h(z) * ¢(z) — 0g(2) *P(2) <B, )]

(1- 0+t [A(2)09() + og@OPE)

where 0<t<1,|o|=1,1<B < %, () and y(z) are given by (5).
We note that:

D MG aogs 1B 1) = M (B) (see [15]);
i)

Mop(z+ ) KTilar)s 2+ D kTi(a)z,1,8,1) = Mp(ar, ),
k=2 k=2

(a;>0,i=1,...,¢;3;>0,j=1,...,5;q <5+ 1;q,s ENg =NU{0},N={1,2,...})
where (see [14])

(a1)i—1(agdi—1--- (@gli—1 1

. k .
B Baler B, D1k

I'(ap) =

Also we note that:

i)
2422 z42°
'//ljf((l —2)3’ (1 _2)3;1)/5:_1)
e (6) = Re {zzh”(z) +2h(2) +228"(2) + 28'(2) } <5
zh'(2) —2¢'(2)
ii)

o0 8]
Mz + D KT 2+ kN1, B, (-1))

k=2 k=2
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Dn+1h(z)+(_1)n+an+1—g(z) <I5
D"h(z) + (—1)"D"g(z) ’

=M (,n) =Re {

for n € N, and where D" is the modified Salagean differential operator (see [11, 18,
20D);

iii)

Mp(z+ Y kT2 k21,6, (-1
k=2 k=2

(B )= Re { I"h(z) + (~1)"I"5(s) } 5

I"h(z) + (1) I g ()

for n € Ny and where I" is the modified Salagean integral operator (see [8], withp =1,
also see [18]);

iv)

M+ k[1+AG=1D]"25 24> k[1+Ak—1)]"251,6,(-1))
k=2 k=2

nh ! _(_1\n n /
=My (B,n,A) =Re : (DA (Z)) (-1 (ng(z)) <pB,
D?h(z)+ (—1)"Djg(2)

where A > 0, n € Ny, and D7 is the modified Al-Oboudi operator (see [2, 21], also see
[3], with p =1);

V)

o0

M+ K[+ A =D] "2 24> k[1+A(k—1)]"251,8,(-1)")
k=2 k=2

=%,,(B,n,2) =Re = (1)) —(1)'s () <8,
ITh(z) + (-1} g (2)

for A > 0 and n € N, and where I} is modified integral operator see ([4], with p =1,
also see [10], with £ = 0);

© 1l Ak = 1)\ © 1l Ak—1)\" .
My (z+2k( T ) zk,z+2k( T, ) zk;l,ﬁ,(—l))

k=2



R. El-Ashwah, M. Aouf, E Abdulkarem / Eur. J. Math. Sci., 2 (2013), 296-310 300

—M,p(B,m,,2) = Re 2(J™(A, Oh(z)) — (—1)’"Mz,)) 5
J™(A, Oh(z) + (1" ™A, 6)g(2)

where A > 0, £ > —1, m € Z = {0,%1,...}, and J™(A,{) is the modified Prajapat
operator (see [9, 17], with p =1).

Further, let for 0 = 1, 4 ,(p,; t, B) be the subclass of ./ ,(¢,;t,3,0) consisting of
functions of the form:

o0

F@ =2+ |ag 2k = |2y < 1. )
k=2

k=1

In this paper, we obtained the coefficient bounds for the classes ./, (p,;t,,0) and
M 4 (p,p;t,B). We also obtain distortion theorem, extreme points, convolution, convex
combinations and integral operator for functions in the class . ;. (¢, y;t, B).

2. Coefficient Bounds and Distortion Theorem

Unless otherwise mentioned, we assume in the reminder of this paper that 0 < t < 1,
lol=1,1<p < ;1 and z € U. We begin with a sufficient condition for functions in the class

M (p,;t, B, o) and obtain distortion theorem for functions in the class 4 (¢, ;t, B).

Theorem 1. Let f =h+ g, where h and g are given by (3), and satisfy the condition

o0 7\, o
é%(k—tﬁ)|ak|+;%(k+tﬁ)|bk~5/3—1, (10)
where
K2(B—1) < Ap(k —tB) and k*(B — 1) < u(k + tB) for k > 2. (11)

Then f (2) is sense-preserving, harmonic univalent in U and f (2) € M4 (p,Y;t, B, 0).

Proof. If 2; # 24, then by using (11), we have

fz3) = f(z1) >ng@ﬂ‘g@ﬂ L&
h(z;) — h(z1) h(z;) — h(z1) (Zz g )+:ZO: a (zk _zllc)
=2
= b o i (kB b
o gl \k} o Elk(ﬁ—1)|k| o
oSkl 1o 58 (52) fa
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which proves the univalent. Also f is sense-preserving in U since

, o0 o0

W (2)] >1 —Zk\ak| 271 > 1 —Zk ||
k=2 k=2
Ak (k—tp

1_;Tk(ﬁ—1 ) ]
U (k+tB
> (o) Ind

o0
Zk |be| Iz > 18 (2)1.

A%

IV

Now we show that f € 4, (¢,y;t,,0). We only need to show that if (10) holds then the
condition (8) is satisfied, then we want to prove that

h(z)xp(z)—0g(z)xy(2) _
(1-0z+t |09 (@) +0 80P

W) p()-0g@WE) __ _(9p _ 1)
(1-0z+t |09 (@) +0gR0PE) |

<1, zel.

We have

he)e@)-0s@E)
(1-0z+t [HE)0¢(E)+0gR0PE)
heo()-0sENE __ _ (9p _ 1)
(1-0)z+t [hE)0p(E)+0 g0V ()

3 %(k—t)(ak|+§%(k+t)|bk|

k=2

2(/3—1)—Zzlk(k 2Bt +1t) |ax| - kl”k(k+2/3t—t)|bk{

<

The last expression is bounded above by 1, if

Z—(k—t)|ak|+2 © (k+ 1) by
o U
52(/5—1)—;7"@—2/%“){ak|—2?"

k=1

which is equivalent to

0 7\, &
Z%(k—t{a’)|ak|+2%(k+tﬁ)|bk{S[D’—l. (12)
k=1

k=2
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But (12) is true by hypothesis and the Theorem is proved. O

In the following theorem, it is shown that the condition (10) is also necessary for function
f(2) given by (9) and belongs to A ,-(¢,y;t, B).

Theorem 2. Let the function f(z) given by (9). Then f(z) € M 5 (@, ;t,B), if and only if the
coefficient bound (10) holds.

Proof Since M 4 (0,;t,B8) S Mp(0,2;t,B,0), we only need to prove the only if part
of the theorem. To this end for functions f € ./ #(p,Y;t,B), we notice that the necessary
and sufficient condition to be in the class .# ,.(,;t, ) is that

h(z) * p(2) — g(2) *(2)

Re
(1= +t [A(2)09() + gE0YE)|

This is equivalent to

Re (B -1z =350, % (k= ) ae| 2" = X2, B (k +¢B) |bi >0. (13)

00 Ak k 00 Uk sk -
z+2k:2?|ak|z —Zk:1?|bk|z

The above condition must hold for all values of z € U, so that on taking z = r < 1, the above
inequality reduces to

(B—1)— 352y % (k—tB) |ax| r*t = 302, ek + ¢B) | bye| <
Lok 302 5 ] it = 302, B o] !

If the condition (10) does not hold then the numerator of (14) is negative for r and sufficiently
close to 1. Thus there exists a gz, = r in (0, 1) for which the quotient in (14) is negative.
This contradicts the required condition for f € .4 ,(p,;t, ). This completes the proof of
Theorem. O

> 0. (14)

Theorem 3. Let the function f(z) given by (9) be in the class M 4(p,v;t,B) and
A < Xk —tB), By < E:(k+tB) for k > 2, C =min{A,,B,}. Then for |z| =r < 1, we have

-k
[F@)| < +]|bir+ (% - ? |b1|) r?, (15)
and -1 B+1
|f(2)|2(1—)b1~)r—(T—?|b1|) r2. (16)

The equalities in (15) and (16) are attained for the functions f given by

-1 1
f@) =1+ |bi )z + (ﬁT—ﬁ%(bl()EZ (17



R. El-Ashwah, M. Aouf, E Abdulkarem / Eur. J. Math. Sci., 2 (2013), 296-310 303

and

f(z)z(l—\blbi—(?—?\bﬂ)? (18)

where }bl{ < %

Proof. Let f(2) € M 4 (p,;t, B), then we have

@) <+ by r+ > (|ai| + | b pr
k=2

<@+ |ba)r+ > (|ae| + [bi]yr?
k=2

B-1 C C
=1+ [ba])r + = ;(ﬁ_l{ak|+ﬁ_1|bk()r2
p—1
C

-1 (B+1)|b
§(1+|b1|)r+ﬁc (1— /3[5_1| 1|)r2

1+ b+ (/551 B (/5+1)|b1)) 2

© 3
<1+ [by|yr + Z(f(k—tﬁ)\ak|+%(k+tﬁ)(bk))r2
k=2

C

which proves the assertion (15) of Theorem 3. The proof of the assertion (16) is similar, thus,
we omit it. O

o0

Remark 1. Putting ¢ = =z+ Y. kI't(a;)z5, Ay = uy = 2I'y(a;), t =1and C =2— B in
k=2

Theorem 3, we improve the result obtained by Pathak et al. [14, Theorem 2.4], by adding the

.. -1
condition |b1| < TSt
The following covering result follows the left hand inequality Theorem 3.

Corollary 1. Let the function f (z) given by (9) be in the class M 5 (¢, ;t, ), where

“(B— A .
|b,| < g_gg&g and Ay < 2 (k - tB), By < Y (k + tp) for k > 2, C = min {Ay, By}. Then for
|z| =r <1, we have

C—(B—-1 C—(p+1
{W:|W|< (g )— (g )|b1|}cf(U).

3. Extreme Points

_In this section we determine t_he extreme points of the closed convex hull of the class
M (9,5 t, ) denoted by clco A (¢, ; ¢, B).
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Theorem 4. Let f(z) given by (9), Then f(2) € clco M (¢, ;t,B) if and only if

F@) =) [Xih(2) + Yiege(@)] (19)
k=1
where
hl(z) =z, (20)
— 1k
h(2) =2 + ;}fk—_zﬁ)zk (k > 2), (21)
and (B - Dk
IR g
gk(z) =2 ekt tﬁ)z (k>1), (22)

o0

where Y, (X +Y) = 1,Xx = 0 and Y, > 0. In particular, the extreme points of the class
k=1

My (9,5 t,B) are {hi} (k >2) and {g;} (k > 1), respectively.

Proof. For a function f (z) of the form (19), we have

f(z)= Z [Xih(2) + Yigi(2)]
_Nx (5 PR __B-Dk
_Z ( lk— ) )”" (Z wlk+ B )

LRk &k
‘”;Ak(k— B L

But,

i(xk(k—tﬁ)_ k(B — 1) X)
S\ kA-B) Mk—tp)F
©, (u(k+t6) k(B —1)
+Z( K1-B) 'uk(k+tﬂ)y")

ZXk+ZYk—1 X, <1.
k=2

Thus f(2) € clco M (9, ;t,B).
Conversely, assume that f(z) € clco A 4(p,;t,B). Set
Ae(k—t
X, = Ak —tB) /5)
k(B-1)

| | (0<Xp <1k >2),
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k
Y, = “I’zgﬁ+tﬁ)|bk| 0<YV <1;k>1)
o0 o0
and X; =1— > X; — Y. Y. Therefore,
k=2 k=1
f(z)—z—i—Z)ak{z —Z\bklz_"
k=1

(B - 1)k S B-Dk
+Z 42— ) ¥ z;uk(kﬂﬁ)y"z

—e D () - 2+ D (aie) -
k=2 k=1
= (1 Sx-Y] Yk) + D X+ Y gy
k=2 k=1 k=2 k=1

= (@)X, + g (@)Yy) -

k=

—_

This completes the proof of Theorem. O

4. Convolution and Convex Combination

In this section, we determine the convolution properties and convex combination. Let the
functions f,,(z) define by

o0

Fa@ =2+ |agu|z =D bl (m=1,2), (23)
k=2

k=1

are in the class 4 ,(p,4;t,3), we denote by (f; * f,)(z) the convolution or (Hadamard
Product) of the function f;(z) and f,(2), that is,

o0 o0
(Axf)E) =2+ > |ae|axa| 2 = D [bia| | bra| 2" (24)
k=2 k=1
while the integral convolution is defined by
(10f)=) ==+ i Wzk - i Wzk. (25)
k=2 k=1

We first show that the class . ,(p,;t, 8) is closed under convolution.
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Theorem 5. For1 < § <6 < g, let the functions f € M 5 (@, p;t,B)and fy € M 4 (p,;t, ).
Then

(f1* f2)(2) EM 3o (9,23 t, B) C M 5 (0,25t,5), (26)
(10£2)(@) €M 5 (0,38, B) C M 5 (0,5 1,5). (27)

Proof. Let f,,(z)(m = 1,2) are given by (23), where f;(z) be in the class .# 4 (p,;t, )
and f,(z) be in the class .4 ,(p,;t,5,). We wish to show that the coefficients of (f; * f,)(2)
satisfy the required condition given in (10). For f, € /4 ,(p,;t,5), we note that |ak’2{ <1
and }bk’2| < 1. Now for the convolution functions (f; * f,)(z), we obtain

2 Ak —td k+td

S22 (5 oo+ 352 (552 o
XAk (k—1t6 X ug [(k+t5

3% (5ot ) el + 5 (57 ) o

> —tp X ux (k+tB

2 (pmr ) lal+ X5 (57 )l =2

=2
2
sincel<f <6< g and f; € M 4(p,;t,B). Thus

I/\

IA

(1% f2)(2) € M 4(0,9;t,8) C M 4(p,9;t,5).

The proof of the assertion (27) is similar, thus, we omit it. This completes the proof of
Theorem. O

Next we show that .# ,(¢,;t,8) is closed under convex combinations of its members.
Theorem 6. The class . 4 (p,;t, ) is closed under convex combination.

Proof Fori=1,2,..., let f; € M (9, ;t, ), where

o0 o0
@) =2+ |a| =D |bi|#F Geusi=1,2,..), (28)
k=2 k=1

o0
then from (10), for Y, m; =1, 0 < m; < 1, the convex combination of f; may be written as

i=1
i m;fi(z) =2+ i (i m; |ak)l~ ) i (i ) . (29)
i=1 k=2 \i=1 k=

Then by (29), we have

S (S (Smla )+ 332 (522 (Sl

k=2 i=1 k=1
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[ ()l (52

This completes the proof of Theorem. O

5. Integral Operator

In this section we examine a closure property of the class . ,(p,; t, f) under the gen-
eralized Bernardi -Libera-Livingston integral operator (see [5, 12]) L.(f (z)) which is defined
by

z

L.(f(2) = Ctl tHF(0)dt, ¢>—1. (30)

0

Theorem 7. Let f(2) € M (¢, ; t,8). Then L.(f (2)) € M 5 (0,5 t, B).
Proof. From (30), it follows that

1 [ o
Lc(f(Z))=C:C | (1) +3(0) ] d

0

zZ z -
c+1 o1 Ok R .
= t t+2akt dt — | (¢ Zbkt )dt
k=2 k=1
L0 0
o0 o0
=z + ZAkzk — ZBkzk,
k=2 k=1
A c+1 B c+1 b
= aj., =
ek )RR T ek ) K

2 (o) (G 2 (577) (50 e
Sg%(ﬁ_l)|ak|+;%(7}+tﬁ){bk)<l

Since f(2) € A ,(p,v;t,3), by using Theorem 1, then L.(f(2)) € 4 5 (p,;t,B). This
completes the proof of Theorem. O

where

Therefore,

For suitable choose of h(z) and g(z) we can obtain the following remarks.
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Remark 2.

)

ii)

i)

)

V)

Vi)

vii)

viii)

[1]

(2]

(3]

(4]

(5]

Putting ¢ =1 = ﬁ and t = o = 1 in the above results, we obtain the corresponding
results obtained by Porwal [15];

o0

Putting p =) = z+ Y. kI't(a1)z" and t = o = 1 in the above results, we obtain the
k=2

corresponding results obtained by Pathak et al. [14];

242>
(1-2)3’

Putting p = = t =1 and o = —1 in the above results, we obtain new results of

the class Ny (B);

o0

Putting g =9 =z+ ), ktigk t =1 ne Ny and o = (—1)" in the above results, we
k=2

obtain new results of the class M 5 (f8,n);

o0
Putting p =y =z + Y. k"X, t =1, n € Ny and 0 = (—1)"*! in the above results, we

obtain new results of the class ZLyw(B,n);

Putting p = =2+ Y. k[1+A(k—1)]"zF, t =1, A >0, n€ Ny and o = (—1)" in the
k=2
above results, we obtain new results of the class M 4 (8,n, A);

o

Putting p = =z+ > k[1+A(k— D] ™2k, t=1,A>0,neNyand o = (—1)" in the
k=2

above results, we obtain new results of the class £ (f3,n, A);

oo m
Putting p =9 =z+ ). k(%&]{_l)) 2k t=10,1>0, meNyand o =(—1)"in
k=2

the above results, we obtain new results of the class M 4 (8, m, £, A).
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