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Abstract. The condition for the non-existence of limit cycles of the FitzHugh-Nagumo system which is

well-known as the simplified nerve system of Hodgkin-Huxley model is improved by constructing some

plane curve.
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1. Introduction

The following two dimensional autonomous system is called the FitzHugh-Nagumo system

([1], [4] and [5] etc.):
¨

ẇ = v − 1

3
w3+w + I

v̇ = ρ(a−w − bv),
(1)

where the dot (̇ ) denotes differentiation and a, ρ, b are real constants such that

[C1] a ∈ R, ρ > 0, 0< b < 1.

The variable w corresponds to the potential difference through the axon membrane and v rep-

resents the potassium activation (sodium inactivation). The quantity I is the current through

the membrane.

The study for System (1) is enormous and many results have been published. The system

for special values of I is investigated by using numerical methods and phase space analysis.

Our purpose in this paper is to improve the sufficient condition for the non-existence of the

limit cycles of System (1) by constructing some plane curve.
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System (1) has a unique equilibrium point (x I , yI) for each I ∈ R. Instead of the parameter

I we introduce a new parameter η. By some transformation η = x I , x = w −η and

y = v−a/b+η/b+ρb(w−η), System (1) is transformed to the following polynomial system:






ẋ = y −
�

1

3
x3+ηx2+ (η2−η2

0)x

�

ẏ = −ρb

3

�

x3+ 3ηx2+ 3

�

η2+
1

b
− 1

�

x

�

,

(2)

where η2
0 = 1−ρb. The above system is called the FitzHugh nerve system and has a unique

equilibrium point E(0,0). This is a system of the Liénard type. In the previous paper ([2] or

[5]) the following result have been given.

Proposition 1. If the condition

[C2] ρb ≥ 1

or

[C3] η2 ≥ η2
0 and η4− 4η2η2

0+η
4
0+ 2

�

1

b
− 1

�

η2− 4

�

1

b
− 1

�

η2
0+ 4

�

1

b
− 1

�2

≥ 0

or

[C4] 2
�

η2
0+

1

b
− 1
�3
< η2
¦

η2+ 3
�

1

b
− 1
�©2

is satisfied, then System (2) has no limit cycles.

As is shown in Figure 1, the diagonal area denotes the condition in Proposition 1 (also see

[2]). The dot · is the point(ρ = 0.012, b = 10/11 and η2 = 1.012) for a system given in the

example of §3.

Figure 1: Demonstrating that System (2) has no limit cycles.

Our main results are the following
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Theorem 1. Assume that the condition

[C5] η2
0 ≤ η2− 2(ρb+

p
ρ)

is satisfied in addition to the condition [C2] or [C3] or [C4]. Then System (2) has no limit

cycles.

Theorem 2. Assume that the condition [C2] or [C3] or [C4] or [C5] is satisfied. Then the

unique equilibrium point E of System (2) is globally asymptotically stable.

The shaded area in Figure 1 is the improved part by our result.

The above theorems are easily proved in the next section and the phase portrait as an

example illustrating our results will be given in §3.

2. Proofs

To prove our main results, we shall introduce a useful tool for the following generalized

Liénard system:
¨

ẋ = h(y)− F(x)

ẏ = −g(x),
(3)

where F , g and h ∈ C1, x(x − a2)F(x) > 0 for x ∈ (a2,+∞) and a2 < 0, g(x)/x > 0,

h(y)/y > 0 and dh/d y > 0.

Let a∗ is the positive number such that G(a∗) = G(a2), where G(x) =
∫ x

0
g(ξ)dξ. We have

from [3] the following

Lemma 1. If there exists a C1-function ϕ(x) satisfying the condition

ϕ(α) = 0, ϕ
′
(x)> 0,

ϕ
′
(x)[F(x)−ϕ(x)]
dh

d y
[h−1(ϕ(x))]

≥ g(x)

for x ≥ α ∈ (0, a∗], then System (3) has no limit cycles.

We shall prove Theorem 1. We can set

h(y) =y,

F(x) =
1

3
x3+ηx2+ (η2−η2

0)x ,

g(x) =
ρb

3

�

x3+ 3ηx2+ 3

�

η2+
1

b
− 1

�

x

�

,

G(x) =

∫ x

0

g(ξ)dξ.
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Remark that System (2) has no limit cycles if η2
0 ≤ (1/4)η2. So we assume that the pair

(η2,η2
0) satisfies the inequality (1/4)η2 < η2

0 < η
2. Then we have two different real numbers

a1 =
−3η−
p

3(4η2
0−η2)

2
, a2 =

−3η+
p

3(4η2
0−η2)

2

and a1 < a2 < 0 as the solutions of the equation F(x) = 0. Moreover, we note that there exists

a unique solution a∗ satisfying the equation G(a∗) = G(a2). Taking the supplement function

ϕ(x) = a(x −α) with a > ρb (> 0) and α ∈ (0, a∗], we have

L(x) =
ϕ
′
(x)[F(x)−ϕ(x)]
dh

d y
[h−1(ϕ(x))]

− g(x)

=
1

3
(a−ρb)x3+ (a−ρb)ηx2

+

�

a(η2−η2
0− a)−ρb

�

η2+
1

b
− 1

��

x + a2α.

Assume that the condition [C5] is satisfied for System (2). Then we see that there exists

two positive numbers a = pi (i = 1,2) satisfying the equation P(a) =−L
′
(0) = 0 and pi > ρb,

where p1 < p2 and P(a) is the function of two degree for the variable a. In fact, we have

η2 − η2
0 > 2ρb, P(ρb) = ρ > 0 and D = (η2 − η2

0)
2 − 4ρb(η2 + 1/b − 1) ≥ 0, where D is

the discriminant of the equation P(a) = 0. Taking a = p2, it follows that L(x) ≥ 0 for x ≥ 0.

Thus, we can easily check the conditions ϕ
′
(x) > 0 and L(x) > 0 for x ≥ α ∈ (0, a∗]. Hence,

we conclude from Lemma 1 that System (2) has no limit cycles under the condition [C5].

The proof of Theorem 2 is proved by the same discussion as in [2] from the non-existence

of limit cycles and homoclinic orbits for System (2). So we omit the details.

We shall confirm that these results are an improvement of the previous ones as seen in

Figure 1.

3. A Numerical Example

We shall present the phase portrait of the following system as an example illustrating the

application of Theorem 1.

Example 1. Consider System (2) with ρ = 0.012, b = 10/11 and η2 = 1.012. Then the pair

(η2,η2
0) belongs to the shaded part in Figure 1, which is satisfied the condition [C5], but not the

condition [C3] or [C4] in Proposition 1. Then we have a2 =−0.020124663 and

a∗ = 0.0198841. Solving the equation L
′
(0) = 0, we can take a = 0.010397 and α = a∗. Thus,

we shall see from the existence of the supplement function ϕ(x) = a(x − α) that the system has

no limit cycles as is shown in Figure 2 below.
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Figure 2: Demonstrating that System (2) has no limit cycles.
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