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Abstract. In this paper we introduce and study a subclass ///ﬁ ’k(a, B) of meromorphically univalent
functions defined by generalized Liu-Srivastava operator. We obtain coefficient estimates, extreme
points, growth and distortion bounds, radii of meromorphic starlikeness and meromorphic convexity
for the class //ZPA ’k(a, B) by fixing the second coefficient. Further, it is shown that the class //ZPA ’k(a, B)
is closed under convex linear combination.
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1. Introduction

Let X denote the class of functions of the form

o0

f@=2"4) a,z" 1)

n=1
which are analytic in the punctured open unit disk
U*:={z:2€C,0< |z| <1} =:U\ {0}.

Let ¥, ¥*(y) and Zk(y), (0 < y < 1) denote the subclasses of ¥ that are meromorphic
univalent, meromorphically starlike functions of order y and meromophically convex func-
tions of order y respectively. Analytically, f € %*(y) if and only if, f is of the form (1) and

satisfies @
z2f'(z
—Qﬁ( @) ) >y, z€0,
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similarly, f € g (y), if and only if, f is of the form (1) and satisfies

zf"(2)
_%t(1+ f’(z))>y’ z€U,

and similar other classes of meromorphically univalent functions have been extensively stud-
ied by Altintas et al., [2], Aouf et al. [3, 4, 5, 6], Mogra et al. [18], Uralegadi [20] and
others.

Let X, be the class of functions of the form

[©9]

f@=2"4) a", a,20, 2)

n=1

that are analytic and univalent in U*. For functions f € ¥ given by (1) and g € ¥ given
o0
gE) =271+ Y by, (3)
n=1
we define the Hadamard product (or convolution) of f(z) and g(z) by
o0
(f g)@) =271+ ) aybyz" =: (g% £)(z). )
n=1

For complex parameters ay,...,a; and fBy,...,B, (8; # 0,—1,...;j = 1,2,...,m) the
generalized hypergeometric function ;F,,(z) is defined by

lFm(z)ElFm(ala'"al;ﬁla"':ﬁm;z) = Z((gll))n ((gl))n Tl' (5)
(I<m+1;l,meN, := NuU{0};z2€U)

where N denotes the set of all positive integers and (6),, is the Pochhammer symbol defined
by

(0), =

F(9+n):{1 n=0;0 €C\ {0} ©)

r(0) 00 +1)(6+2)...(0+n—1), neN;0eC

Corresponding to a function ;F,,(a,...a;; B1,---, Bm; 2) defined by

F(ay,...05 P15 Bms 2) :=z_llFm(al,...al;ﬁl,...,[a’m;z),

Liu and Srivastava [16] (see also [17]) considered a linear operator (a1, ... a;; B1,---,Bm) :
3. — X defined by the following Hadamard product (or convolution):

%(aln"'al;ﬁlz"':ﬁm)f(z) = g(aln"'al;ﬁlz"':ﬁm;z)*f(z)
= (al)n+1"'(al)n+1 anzn

-1
+Z (ﬁl)n+1"'(ﬁm)n+1 (Tl—l— 1)!’

n=1

(7)




N.Magesh and VPrameela / Eur. J. Math. Sci., 1 (2012), 88-99 90

where, a; > 0,(i = 1,2,...0),6; > 0,(j = 1,2,...m),l <m+1; I,m € Ny = NU {0}. For
notational simplicity, we use a shorter notations anll[alj for #(ay,...a;;B1,...,Bm), in the
sequel. We note that the linear operator %nlq[al] was motivated essentially by Dziok and
Srivastava [9].

Next, we define the linear operator @;rz 2 — X by

P50f () = f(2),

A
@;’f{‘f (2)=01-NA[a,1f () + ;(zzjfni[al] FR) =2 F(2),(A > 0).

and (in general),

@éc,r;f(z) = @;Cm(@;,f;_lf(z))

l 1 N

GG = o+ Talank ) a,2", ®
n=1

where,
(al)n-i-l v (al)n+1 [1 + A(n - 1)]k

(ﬁl)n—H '“(ﬁm)n-i-l (Tl—+— 1)!

We note that, for k = 1 and A = 0 the operator @é’)'l" flz) = Jfrﬁl[alj f(2) which was
investigated by Liu and Srivastava [16], (see also [8]), for[=2, m =1, a; =1, A =0 and
k = 1 the operator @g:ll lay,1;B11f (z) = Z[ay; B1]f (2) was introduced and studied by Liu
and Srivastava [15] (see also [1], [12] and [22]). Further, we remark in passing that this
operator ¥ [a;; ] is closely related to the Carlson-Shaffer operator £ [a;; 3;] defined on
the space of analytic and univalent functionsin U. For l =2, m=1,a; =06+1, f1=a, =1,
A =0 and k = 1, the operator @é:ll[6 +1,1;1]f(2) = 2°f(2) = m x f(2)(6 > —1),
where 99 is the differential operator which was introduced by Ganigi and Uralegadi [10] (see
also [8]) and then it was generalized by Yang [21].

Now by making use of the operator @ll’;:, we define a new subclass of functions in %p as
follows.

rn(aln k: A') =

, (keNgy, A>0). 9

Definition 1. For a > 1 and 0 < f8 < 1, let .#**(a, B) denote a subclass of & consisting
functions of the form (1) satisfying the condition that

R {z@;’f;f(z) - azz(gll’,';f(z))’} > B, zelU¥ (10)

where @;rz f(2) is given by (8). Furthermore, we say that a function f € //llf ’k(a, B,r), when-
ever f(z) is of the form (2).

In this paper, we assume that a > 1, 0 < # < 1 and I',(a1,k, 1) is given by (9) one or
otherwise stated in sequel. We observe that, by specializing the parameters [, m, a4, ... ay,
Bi, .- Bm, k, v, A and k the class leads to various subclasses. As for illustrations, we present
some examples for the cases.
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Example 1. Ifl =2and m=1with a; =1, ay, =1, ; = 1 and f(2) of the form (2), then we
obtain the new subclass #p(a, 3,y) defined by

R {zf(z) - azzf’(z)} > .
The class were introduced and studied by Aouf [3], Kulkarni and Joshi [13].

Example 2. For =2, m=1, a; =6 +1 f8; = ay = 1 and f(z) of the form (2), then we get
the new subclass @g(a, B,y) defined by

R {22°f(z) — az*(2°f (2))'} > B.

where 9°f () = %ﬂ * f(2)(6 > —1), is the differential operator which was introduced by

z(1—2)

Ganigi and Uralegadi [10].

Example 3. For | =2, m =1, a; =1 and f () of the form (2), then we obtain the new subclass
=gP(ay ﬁ) Y) deﬁned b.y

R {22y, B,1f (2) — az*(L[ay, B11f (2))' } > B.

where the operator ¥ [a;; 1] was introduced and studied by Liu and Srivastava [15] (see also
[11] and [22]).

Example 4. For L = 0, k = 1 and f(2) of the form (2), then we obtain the new subclass
L7£P(a5 ﬁ: Y) deﬁned by

R {2 [01]f (z) — az*(#[a11f (2))'} > B.
where the operator #[a,] was introduced and studied by Liu and Srivastava [16] for multiva-

lent functions.

2. Coefficients Inequalities

Our first theorem gives a necessary and sufficient condition for a function f to be in the
class Zp(a, 8,7, A, k).
Theorem 1. Let f € p be given by (2). Then f € ¥p(a, B,y, A, k) if and only if

(na— 1T (a5, k,A)a, <1+a—p. (11)

n=1

Proof. Suppose that f € Zp(a, 8,7, A, k). Then

1 & -1 &
n 2 n—1
il {z(; + Zl“n(al,k, Aa,z") — az (z—2 + an“n(al,k, Aa,z )}

n=1 n=1
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n=1

=R {1 +a-— i(na — Dr,(ay,k, A)anznﬂ)} > B.

If we choose z to be real, let z — 1—, we get

o0
1+a— Z(na -1l (a,k,A)a, <p

n=1

which is equivalent to (11). Conversely, let us suppose that the inequality (11) holds true.
Then we have

29,0 f (2) — az (25 f (2)) | =

o0
= D (na = ly(ark, Aaye"™"
n=1

o0
< (na—1)Ty(ay, k, Dlay|lz"™*

n=1

<l4+a-p

which implies that f € 2p(a, 8,7, A, k). Finally, we note that the assertion (11) of Theorem 1
is sharp, the extremal function being

1 1+a—-p
f(z)—;—l- (a—l)l‘l(al,k,k)z

The coefficient estimate for functions in the class Xp(a, 8,7, A, k) is sated in the following
corollary.

Corollary 1. If f € Zp(a, B,7, A, k), then

1+a—-p

> 1. 12
= (na_l)rn(alﬁlgl), "= ( )
The result is sharp for the function

1 1+4a-p
fa(2) = 2 + e =T (@ k) n=>1. (13)
Next we obtain the growth theorem for the class Xp(a, 8,7, A, k).
Theorem 2. If f € p(a, B,7, A, k), then
1 1+a—-p
PN CES N

1 1+a—p _
<@ T+ e 1=

and

1 1+a—-p

r2 (a_ 1)r1(a1’k3 A')
The result is sharp for

, 1 1+a—-p B
SIff@ls 5+ (@— DT (@, k) (lzl =r).

1 1+a—p
fE)=—+ TECN 5 (14)
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Proof. Since f(z) = % + Zflo:l a,z", we have

S| =

1 o o
@IS+ ar" <= +r) a, (15)
n=1 n=1

Given that f € Xp(a, 8,7, A, k), from the equation (11), we have

o0 o0
(a—1)T(ay,k, A)Z a, = (na—1Tr(aq,k,A) a,
n=1 n=1
< l+a-p.

That is,

> 1+a—f
Sa |
n=1 (a - 1)F1(a1’k3 A')

Using the above equation in (15), we have

1 1+a—-p
|f(Z)| = ; - a— 1)r1(a1:kak)r
and 1 1+a—p
a_
|f(Z)| Z ; - (a - 1)r1(a1’k3 A') "
1+a—f

The result is sharp for f(z) = % + z. Similarly we have,

(a=1)r(ay,k,2)

1+a-p
(a - 1)r1(a1:k: A’)

1
HOEEE

and
l+a-p

(a - 1)r1(a1,k’ A)

1
|ﬂ&ﬂ§;5+

Let the functions f;(z) (j = 1,2,...,m) be given by

1 o0
fi(z) = ;+Zan,jz”, a,; =0, neN,n>1. (16)
n=1

We state the following closure theorem for the class 2p(a, 3,7, A, k) without proof.

Theorem 3. Let the function f;(z) defined by (16) be in the class Tp(a, 3,7, A,k) for every
j=1,2,...,m. Then the function f(z) defined by

=243 0

Z

belongs to the class Yp(a, 3,7y, A, k), where a,, = iZ;‘nﬂ anj, (n=1,2,...).
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Our next result gives the extreme points for functions in the class 2p(a, 8,7, A, k).

Theorem 4. (Extreme Points) Let

l14a-p n
a—Dla k" =1 an

Then f € Zp(a, B,v, A, k), if and only if it can be represented in the form

1 1
fo(z) = —and fy(z) = — +
b4 b4

F@ = nfa@, (W20, p,=1). (18)
n=0 n=0

Proof. Suppose f(z) can be expressed as in (18). Then

F@ =D tnful@)
n=0

= tofo(2) + D tinfa(2)
n=1
1 n Z 1+a-— ﬁ n

z M e — D (a0

n=1

Therefore,

i 1+a-—p (na —1DT(aq,k,4)
nzl“” (na — 1)y(ag, k,A) 1+a-p #

=Y p—1=1-p<1.

n=1
So by Theorem 1, f € p(a, B,7, A, k).
Conversely, we suppose f € p(a, 8,7, A, k). Since

1+a—-p

< > 1.
= (na_ 1)rn(a1)k5 )L), "=
We set,
-1)r k,A
U, = (Tla ) n(ab 5 )Cln, n> 1
l14a-p
o0
and uo =1— >_ u,. Then we have,
n=1
o0
F@ =D paful)
n=0
o0
= tofo(2) + Y tnful2).

n=1

Hence the results follows.
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3. Radii of Meromorphically Starlikeness and Meromorphically Convexity

In this section, we obtain the radii of starlikeness and convexity of order é for functions
in the class Xp(a, 3,7, A, k).

Theorem 5. Let f € ¥p(a, B,y, A, k). Then f is meromorphically starlike of order 5(0 < 6 < 1)
in the disc |z| < ry, where

r, =inf
n

1-6 (na—1)T,(aq,k,A)
|:(n+2—5) l1+a-p

The result is sharp for the extremal function f (z) given by (17).

]”_1 (n=1),

Proof. The function f € Xp(a,f,y, A, k) of the form (1) is meromorphically starlike of
order 6 in the disc |z| < ry, if and only if it satisfies the condition

zf'(2)
+1|<1-6. (19)
f(z)
Since
z2f'(2) 11l < Zzozl(n+ a,z"*! - Zzozl(n + 1)la,||z|*t
f(=) 1+ Zzozl a,z" ! 1-— 220:1 la, ||zt

The above expression is less than 1 — ¢ if

2n+2-—5 B
ZTVHJ 2" ! < 1.
n=2

Using the fact, that f € Zp(a, 8,7, A, k) if and only if

i (na — 1T ,(ay,k, A)a

a <1
~ 1+a—-p
We say (19) is true if
n+2—-906 1 (ma—=1r(ay,k,A)
—z|"" < .
1-6 l1+a—p

Or, equivalently,
(1 - 5) (na - 1)Fn(a1, k’ A)

(n+2-906) 1+a-p
which yields the starlikeness of the family.

|z|n+1 <

Theorem 6. Let f € Xp(a, 8,7, A, k). Then f is meromorphically convex of order 6 (0 <6 < 1)
in the unit disc |z| < ry, where

1
1-6 (a_ 1)Fn(a13kﬁx) n+l
=inf >1
=R |:(n—+—2—5) 1+a—p } (=1,
The result is sharp for the extremal function f (z) given by (14).

Proof. The proof is analogous to that of Theorem 5, and we omit the details.
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4. Partial Sums

Let f € X be a function of the form (1). Motivated by Silverman [19], Cho and Owa [7],
Latha and Shivarudrappa [14], we define the partial sums f,, defined by

fm(z) = é + ;anz” (meN). (20)

In this section, we consider partial sums of functions from the class X(a, 3,7, A, k) and
obtain sharp lower bounds for the real part of the ratios of f to f,, and f' to f/.

Theorem 7. Let f € %p(a, B,7,A,k) be given by (1) and define the partial sums f;(z) and
fn(2), by

1 1 L
fi(z) = S and fm(z) = St Z laglz", (meN/{1}). 21
n=1

Suppose also that

o
D dalaal <1,
n=1

where
i 1 forn=1,2,3,...,m 22)
" —(na_art;'gaﬁl’k’l) forn=m+1,m+2,m+3---"
Then f € Zp(a, B,v, A, k). Furthermore,
f(2) ) 1
Re >1-— (23)
(fm(z) dm+1
and @ i
Z
Re | & ) >_—m 24
( f(2) 1+dp
Proof. For the coefficients d,, given by (22) it is not difficult to verify that
dpy1>d, > 1. (25)

Therefore we have

ilan| +dm+1 i |an| S idnlanl S 1 (26)
n=1 n=1

n=m+1

by using the hypothesis (22). By setting

f(=) 1
21#) = dni (m - (1 - dmﬂ))
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00
n—1
dm+1 Z anz
n=m+1
= 14+ ,

m
1+ Y, az™!

n=1

then it suffices to show that
R(21(2) >0 (z€UY)

or,
d,(2z)—1
L <1 (z = U*)
cI’]_(Z) +1
and applying (26), we find that
>
d |ay|
CI>1(Z) -1 ‘ < el n=m+1 "
®,(z)+1 n X
! 2-2 lagl = dpp1 X lag
n=1 n=m+1

< 1, zeU"

which readily yields the assertion (23) of Theorem 7. In order to see that

1 Zm+1
fE)=-+ (27)
z dm+1
gives sharp result, we observe that for z = re!™/™ that PR R A asr—1".
fm(2) A1 dpiq

Similarly, if we take

®,(2) = (1+dpi) (f"‘(z)— It )

flz)  1+dun

and making use of (26), we deduce that

o0
(1 +dpy) |a,|
D,(2) — 1‘ < i n=§+1 !

®,(2)+1 m &
2 2-23 lal—(Q—dpy1) X lal
n=1 n=m+1

which leads us immediately to the assertion (24) of Theorem 7. The bound in (24) is sharp
for each m € N with the extremal function f (z) given by (27).

Theorem 8. If f () of the form (1) satisfies the condition (11). Then

f'(2) m+1
% (f,;(Z)) =1
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R fn/1(z) > dm+1
f/(Z) _m+1+dm+1’

and

where
n forn=2,3,...,m
d,>

(a—1)Ty(ay,k,4) _ o
o p forn=m+1,m+2,m+3

The bounds are sharp, with the extremal function f (z) of the form (14).
Proof. The proof is analogous to that of Theorem 7, and we omit the details.
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