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Abstract. The market of a product is stochastic in nature, especially in terms of demand and price. If
demand is high in short span of time, the price also rises proportionately, but demand highly depends
on consumer’s need. In diminishing market, demand of a product decreases and due to this, product
may disappear altogether from the market. One can opt out and reduce the selling price and generate
excess demand to earn more and to establish the product in market. In competitive environment, the
strategy is also applicable in entering into competition with others. The objectives of present paper
are to develop a dynamic pricing policy to solve such types of problems in a diminishing market. The
problem is solved by coming to terms with ’Kuhn Tucker imperatives and modalities’, in this regard.
A simulation study is appended to measure the effect of various parameters on optimal policy. The
analysis reveals that for every business setup, there will be an optimal number of price settings for
dynamic pricing policy that outperforms the static pricing policy.
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1. Introduction

In a competitive environment retailer and item producing company both identifies the
importance of pricing policy so as to improve the revenue and earn more profit. A perfect
pricing and marketing policy may boost the company’s bottom-line. After a time duration
some products like fashion apparels, cosmetic, winter wear etc. are out dated or completely
perished. To solve such problem company management needs to design a pricing policy in
such a way that the entire stock be sold out before entering into the next cycle. For this,
the company may go with a special sale, price discount, stock display or continuous price
decay. Inventory cost plays a vital role in inventory management. Expenditure sources like
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ordering cost, safety, lead time and numbers of lots are the integral parts of decision making.
An integrated inventory model focusing on these issues has been discussed by [5]. In a
contribution, [9] introduced the concept of sale promotion (at the festival) for the clearance
of stock and compared two models having without special sale and is with a special sale. They
found that the model with special sale outperforms to earlier. The back order and partial lost
sale is investigated by [6] with impact of lead time on optimal policy and safety. Some related
contribution we refer to [12], [16] and [10]. By dividing the demand rate into segments [13]
introduced three component demand rate for newly launched deteriorating item. [8] applied
the stock dependent demand theory on for deteriorating items whereas [11] examined same
for simple inventory system. [2] had shown that the inventory levels after ordering and
price-charge are strategic substitutes. They analyzed simultaneous price and inventory in an
incapacitated system by using stochastic demand for single items. The aspect on inflation and
delay in payment to vendors has been attempted by many authors. [15] designed the EOQ
model for deteriorating item under assuming that demand depends on price and stock. A
similar approach followed by [3] on deterministic economic order quantity (EOQ) inventory
model by taking into account the inflation and the time value of money for deteriorating items
with price and stock-dependent selling rate. some useful contribution due to [4, 8, 14].

Not only price reduction but also price hike specially on fuel, excise duty, transportation
increases rate of inflation and many related factors affecting manufacturing, marketing and
servicing cost. [3] used a linear demand function with price sensitiveness and allowed retailer
to use a continuous increasing price strategy in an inventory cycle. He derived the retailer
optimal profit ignoring all inventory cost. His findings are restricted for growing market
neither stable nor declining market. A research overview presented by [1] is based on the
present problem and for future planning as it jointly determines the dynamic pricing and
order level both. [15] presented an economic production quantity model for deteriorating
items when the demand rate depends not only on-display stock, but also on the selling price
per unit of the item. Due to economic policy, political scenario and agriculture productivity
both get affected. [7] dealt with such type of situation and proposed models with uncertain
inflation for deteriorating items. [18] showed analytically that solution of vendor managed
problem to outperform to the traditional solution of the inventory problem. [17] discussed an
inventory policy for products with price and time dependent demand. He obtained the order
size and optimal prices both when the decision maker has an opportunity to adjust price
before the end of sale season by Kuhn-Tucker’s necessary conditions and derived an optimal
solution. A large proportion of customers are influenced by advertisements may be through
electronic media, newspapers, internet or companion. Rebate in price through advertisements
affects sales in supermarkets. Mostly in declining market it happens that reduces constantly
and managers put their effort to uplift the sale through media and pricing policy. This conflict
motivations for the dynamic behavior based study of the inventory system.

2. Notations and Assumptions

The proposed model has been developed under assumptions that shortages are not al-
lowed and replenishment rate is infinite. Notations bearing the concepts utilized in the dis-
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cussion are given as under:

L Prescribed time horizon.

N Number of change in selling price.

Nm Maximum number permissible changes in price.

T Time interval for any two price change where T = L/n.

si Total sale quantity from beginning to end of ith change in prices.

q Quantity required for sale over time horizon L.

h Holding cost unit per unit time is constant.

C3 Set-up cost.

c Unit purchasing cost.

c0 Cost arising to change the price once.

b Parameter associative to non increasing (decreasing) trend in demand.

a Initial demand at t = 0.

p j Selling price of product in interval [( j− 1)T, jT] where j = 1, 2, . . . , n.

θ Rate of deterioration in system.

β Parameter associate to contribution of price in demand.

Di(n, pn) Amount of deteriorated units in time interval [(i− 1)T, iT].

D(n, pn) Amount of total deteriorated units in system over time horizon L.

Hi(n, pn) Inventory carrying cost over time horizon (i− 1)T to iT .

Hn(n, pn) Total sales revenue over time horizon L.

Rn(n, pn) Total sales revenue over time horizon L.

Fn(n, pn) Net profit over time horizon L.
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3. Formulation of Proposed Model

Assumes that a product is purchased at rate c per unit for time horizon L. Management
follows a strategy to change the selling price n times, therefore time L is divided into n
equal parts such that T = L/n and the intervals for price settings are [0, T], [T, 2T], . . .,
[(n−1)T, nT]. Management has to decide as to how many times (n) price may change to earn
maximum profit and also to determine respective optimal prices (pi) and ordered quantity (q).
If optimal prices for these intervals are p1, p2, . . . , pn, and c0 be the cost associated to change
the selling price once, so total cost for change in selling price is nc0. If is sold units of product
in period [0, iT], where i = 1, 2,3, . . . , n. In order to reduce the selling price p j and generate
the access demand suppose that the demand of product is:

dt(p j) = (a− bt − βp j) (1)

where ( j − 1)T < t ≤ jT , a− bt − βp j > 0, a > 0, b > 0, β > 0, β , a are fix and known for a
given business setup. Suppose sale amount of product is si over time interval [0, iT] then

s j =
i=n
∑

i=1

jT
∫

( j−1)T

dt(pi)d t − βT
i=n
∑

i=1

p2
i −

1

2
i2 bT2 (2)

The total sold amount in time horizon L = nT is

Sn = anT − β
i=n
∑

j=1

p j −
1

2
n2 bT2 (3)

The objective is to find out optimal number of change in selling price (n) and respective selling
prices p j , along with optimum profit F(n, pn).

Suppose Ii(t, pn) is on hand inventory at time t, and θ is rate of deterioration in interval
[(i − 1)T, iT]. Then rate of decay in inventory is sum of the deteriorated units and demand
rate of product per unit time (i.e. θ Ii(t, pn) + d(i − 1)T + t)). However, the rate of decay
in inventory is d

d t
Ii(t, pn) with negative sign. Thus the differential equation would be in

following form:

d

d t
Ii(t, pn) =−d(i−1)T+t =−(a+ bT − biT − bt − βpi) (4)

with boundary condition Ii(0, pn) = q− si−1 and d(i−1)T+t > 0

Ii(t, pn) = (q− s(i− 1))(1− θ t)− (ai − biT − βpi)t

t2

2
(b+ aiθ − bi Tθ − βθ pi)−

1

6
bθ t3 (5)

where ai = a+ bT . Deteriorated units in interval (i− 1)T, iT are Di(n, pn)

Di(n, pn) = Ii(T, pn)− Ii(T, pn)
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Total deteriorated units in system over time horizon L is

D(n, pn) =
n
∑

i=1

Di(n, pn) (6)

The holding cost will be

H(n, pn) = h
n
∑

i=1

T
∫

0

Ii(n, pn)d t (7)

Total sale revenue R(n, pn) over time L is

R(n, pn) =
n
∑

i=1

pi

∫ jT

( j−1)T
dt(pi)d t

=



aT
n
∑

i=1

pi − βT
n
∑

i=1

pi
2−

1

2
bT2

n
∑

i=1

(2i− 1)pi





(8)

Due to occurrence of deterioration the amount of required stock in system is

q1 = q+ D(n, pn)

Net profit F(n, pn) in this business schedule is

F(n, pn) = R(n, pn)−H(n, pn)− q1c− nc0− C3 (9)

Now we develop the objective function L(n, pn) as per Kuhn Tucker condition under the con-
dition that

pi <
a− biT

β
(10)

L(n, pn) = F(n, pn)−
n
∑

i=1

�

pi −
a− biT

β
+ Zi

2
�

(11)

where Ai = Zi
2, n< NMax

Theorem 1. For fix n, and Ai > 0, optimal price in interval [(i− 1)T, iT] is

pi1 =
a

2β
−

b(2i− 1)T
aβ

+
c

2

�

1−
θT

2

�

+
hT

2

�

i−
1

2
−

iθT

2
+
θT

6
)
�

−
λi

2βT
(12)

If Ai ≤ 0 then

pi2 =
a− biT

β
,

where i = 1,2, 3, . . . , n∗.
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Proof. From equation (11)

∂

∂ pn L(n, pn) = aT − 2βT pi −
bT2

2
(2i− 1) + 2βT

n

�

−βTi

�

T2−
aT2

2

�

+
βT2

2
−
θβT2

6

�

−λi (13)

∂

∂ λi
L(n, pn) =−

�

pi −
a− biT

β
+ Zi

2
�

= 0, orAi =
a− biT

β
− pi1

∂

∂ Zi
L(n, p) =−2λi Zi = 0 (14)

Equations (13), optimize the price, For Ai = Zi
2 > 0, we have

pi1 =
a

2β
−

b(2i− 1)T
aβ

+
c

2

�

1−
θT

2

�

+
hT

2

�

i−
1

2
−

iθT

2
+
θT

6
)
�

−
λi

2βT
.

For Ai = Zi
2 ≤ 0, then equation (14) leads to

pi2 =
a− biT

β
(15)

Lemma 1. F(n, pn) is concave for given n and i = 1, 2, . . . , n

Proof.
∂ 2

∂ p2 F(n, pn) =−2nβT≤ 0

∂ 2

∂ p2 F(n, pn) =−2nβT≤ 0, for i 6= j

Then kth principal minor determinates of Hessian matrix (according to Kuhn-Tucker necessary
condition) are of sign (−1)k for k = 1, 2, . . . , n. So F(n, pn) attains global maxima and H is
negative definite therefore F(n, pn) is concave.

Lemma 2. R(n, pn) is concave for given n.

Proof. from equation (8)
∂

∂ pi
2 F(n, pn) (16)

∂

∂ pi
2 F(n, pn) (17)

Then kth principal minor determinates of Hessian matrix (according to Kuhn-Tucker necessary
condition) are of sign (−1)k for k = 1, 2, . . . , n. So R(n, pn) exist global maxima and H is
negative definite therefore R(n, pn) is concave. If R(n, pn) is concave then this shows that
revenue R(n, pn) exists global maxima. That is the solution of proposed problem exists.
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Theorem 2. In the proposed model price is continuously in decreasing order.

Proof. For fix n and for each i, there are two possible cases.

Case I If Ai = Zi
2 > 0

pi1 =
a

2β
−

b(2i− 1)T
aβ

+
c

2

�

1−
θT

2

�

+
hT

2

�

i−
1

2
−

iθT

2
+
θT

6
)
�

−
λi

2βT
(18)

∂

∂ i
pi = pi − pi−1 =−

bT

2β
−
�

hT

2

θT

2
− 1
�

, i > 1 (19)

As per laid down b > 0, h> 0, β > 0 and T > 0.

Case II If Ai = Zi
2 ≤ 0 from equation (13) ∂ pi

∂ i
= pi − pi−1 =

bT
β

which followed the result.

Theorem 3. Fix for n and for each i, R(n, pn) is monotonic increasing.

Proof. Using (7)

R
�

n, pn�− R
�

n− 1, pn−1
�

= aTβpi − βT pi
2−

bT2

2
(2i− 1)pi

i > 1, T pi

�

a− βpi − biT +
bT

2

�

> 0

by using (9), a − biT − βpi > 0 Hence R
�

n, pn� is monotonic increasing for fix n, and for
every i = 1, 2, . . . , n. The result shows that the selling price is decreasing continuously but
even then revenue R

�

n, pi
�

.

Corollary 1. R
�

i, pi
�

is maximal it i = n

Theorem 4. For fix n and for each i, F
�

n, pn� is monotonic increasing.

Corollary 2. For fix n and for each i, F
�

n, pn� is maximum at i = n.

Theorem 5. For fix n and for each i, si is monotonic increasing.

Proof. Since si = aiT − βT
∑n

i=1 p j −
bT
2

, i.e.

si − si−1 = a
�

−b(i+ 1)T − βpi +
3

2
bT
�

, i > 1 (20)

As per laid down, demand is d(t, p j) = a − bt − βp j > 0, for t ∈ [0, nT], T = L/n. For
t = (i+ 1)T, a− b(i+ 1)T − βpi > 0

si − si−1 > 0, i > 1 (21)
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Corollary 3. For fix n and for each i, si is maximum at i = n.

Theorem 6. For fix n and for each i, Di(n, pn) is monotonic decreasing at i = n.

Proof. As per laid down

Di
�

n, pn�= [Ii
�

T, pn�]θ=0− [Ii−1
�

T, pn�]θ=0

Di(n, pn) = θT (q− si−1) +
θT2

2

�

bT

3
− biTβ iT − βpi − aT

�

i.e.

Di(n, pn)− Di−1(n, pn) =−θ
�

si−1− si−2
�

−
θT2

2

�

a+ bT + β(pi−1− pi)
�

As per Theorem 5, si−1− si > 0 and by Theorem 2,

pi−1− pi > 0, i > 1

a+ bT + β(pi+1− pi)> 0

Hence
Di(n, pn)

�

Di−1(n, pn)
�

< 0 (22)

4. Solution Procedure

i) Calculate Ai

• If Ai > 0 then calculate pi1 from (11) (Theorem 1),

• If Ai ≤ 0 calculate pi2 from (12) (Theorem 1),

ii) Calculate respective R(n, pi) where i = 1,2, 3, . . . , n

• According to Corollary 1 of theorem 3, R(n, pi) is maximal at i = n.

iii) Calculate R(n, pn) for each n.

iv) Calculate respective F(n, pn)

• According to Corollary 2 of theorem 4, F(n, pi) is maximal at i = n.

v) Calculate F(n, pn) for each n.

vi) Repeat above for n= 1,2, 3, . . . , NMax

vii) Examine m for which F( j, p j)≤ F(m, pm)≥ F(k, pk), where j = 1, 2, . . . , (m− 1) and
k = m, m + 1, m + 2, . . . , n. Declare m for which F(m, pm) is maximal and then op-
timal price setting will be m. Also declare the corresponding optimal selling prices
p1, p2, . . . , pm.
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5. An Example

Consider the demand function dt(p j) =
�

1000− 8t − 1.5p j

�

and other parameters are
c0 = 200 per price change, C3 = 200 per order, θ = 0.01 unit per unit time, c = 110 per
unit, L = 100 days and NMax = 12. We apply the above detailed solution procedure, for
n = 1, 2, . . . , 12, and compute the corresponding cost, revenue and profit. Using above one
can find the optimal profit from Table 1.

Table 1: Optimal Policy (* indicates the optimal strategy)

n sn R(npn) Purch. Cost Total Cost F(n, pn) Opti. Pri. for T = 10

1 21753 5546525 2392775 2393004 3153320
p1 = 375.00
for [0, 10]

2 21749 6212779 2392363 2393220 381935
p2 = 348.34
for (10,20]

3 21748 6336129 2392256 2393433 3942496
p3 = 321.68
for (20,30]

4 21747 6379291 2392208 2393638 3985453
p4 = 295.02
for (30,40]

5 21747 6399264 2392181 2393840 4005223
p5 = 268.35
for (40,50]

6 21747 6410111 2392164 2394041 4015869
p6 = 241.69
for (50,60]

7 21747 6416650 2392152 2394242 4015869
p7 = 215.03
for (60,70]

8 21747 6420893 2392137 2394426 4026250
p8 = 188.37
for (70,80]

9 21747 6423802 2392137 2394642 4028958
p9 = 161.70
for (80,90]

10* 21747* 6425881* 2392132* 2394843* 4030838*
p10 = 135.04
for (90,100]

11 23572 5410769 2592874 2595781 2814787
12 25345 4470769 2787933 2791038 1679530

On observing Table 1, an optimal price setting is at n = 10 (optimal profit highest at
n = 10) and for these, corresponding optimal prices are p1, p2, . . . , p10. in time intervals
[0, 10], (10, 20], (20, 30], (30, 40], (40, 50], (50, 60], (70, 80], (80, 90] and (90,100].

From Table 1, optimal profit is F(n, pn) = 4030828 at n = 10 which is 27% higher than
the static pricing policy at n = 1 (F(n, pn) = 3153320), which reveals that dynamic pricing
policy outperforms the static pricing policy. If we apply a linear function of price [9] then
optimal profit will be F(n, pn) = 3153320, which is less than our optimal profit.

Revenue increases till n = 10 and thereafter decreases and lowest at n = 1 (see Table 1).
Noticeable result is that total inventory cost is minimum (2393004) at n = 1, than 2394843
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at n= 10, but optimal profit is high at n= 10 than n= 1. This reveals the minimum incurred
cost does not guarantee for more revenue. However, higher market capitalization indicates
for higher level of profit.

6. Conclusion

When demand declines in a market, the implementation of a dynamic optimal pricing
policy not only helps stabilize the product in the market but also provides the system with
the capability to compete with other products. The numerical example and simulation study
both reveal that the proposed dynamic pricing policy outperforms the static pricing policy.
Our results also show that revenue continues to increase although the selling price decreases.
An increase in purchase cost does not affect the optimal number of price settings, but it does
reduce the optimal profit; the same is followed due to parameters b and β . The total inventory
cost is lower with the static pricing policy than with the dynamic pricing policy. Lower cost
does not guarantee to earn higher profits, but higher volume and large market capitalization
do lead to higher revenues and profits. Theoretical and analytical evidence indicates the
existence of an optimal number of changes in the value of selling prices for achieving an
optimal profit in any business setup. Inventory managers are advised to keep the β parameter
high so as to generate excess demand and, in so doing, more revenue. For further interest one,
can also relax parameter binding and develop dynamic replenishment policies and dynamic
pricing policies as ways in which to adapt to the growing market.
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