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Derivatives of xn(x − 1)(x − a) with Rational Roots
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Abstract. Let n ≥ 3 denote an integer and a 6= 0, 1 denote a rational number. For the family of
polynomials f (x) = xn(x − 1)(x − a) with fixed value of n, we show that there exist infinitely many
values of a such that the first two derivatives of f (x) have rational roots. We find two examples of n
and a for which the first three derivatives of f (x) have rational roots.
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1. Introduction

A polynomial f (x) with rational coefficients is called rational derived if f (x) and all of its
derivatives have rational roots. The following example of a rational derived quartic was given
by Carroll [4].

f (x) =(x + 167)2(x − 141)(x − 193),

f ′(x) =4(x + 167)(x + 2)(x − 169),

f ′′(x) =12(x − 97)(x + 97),

f ′′′(x) =24x .

The most well known, open problem associated with rational derived polynomials is determin-
ing whether or not there exists a rational derived quartic polynomial with distinct roots. The
reader should consult Buchholz and Kelly [2], Buchholz and MacDougall [3], and Stroeker
[9] for background on this problem. We may also consider polynomials with rational roots,
whose first l derivatives also have rational roots. The notation D(n, l,Q), introduced in [3],
denotes the set of polynomials of degree n such that they and their first l derivatives have
rational roots. Quartic polynomials with four roots in an integral domain D and whose first
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derivatives have three roots in D were treated by Groves in [6] and in [7]. In this paper we
study polynomials of the type

f (x) = fn,a(x) = xn(x − 1)(x − a)

where the integer n satisfies n ≥ 3 and a 6= 0,1 is a rational number. Our main result con-
firms that for each integer n ≥ 3 there exist infinitely many rational numbers a 6= 0,1 such
that fn,a(x) ∈ D(n+ 2, 2,Q). We state this in Theorem 1 and give a proof in Section 2. In
Section 3 we consider the sets D(n+ 2, l,Q) where l ≥ 3, finding two pairs (n, a) such that
fn,a(x) ∈ D(n+ 2, 3,Q), then finish by asking two questions.

We now state our main theorem. The case where n = 2 of our theorem is covered in [2]
and [3].

Theorem 1. For each integer n ≥ 3, there exist infinitely many rational numbers a such that
fn,a(x) ∈ D(n+ 2, 2,Q). For fixed n, these values of a have the form

a =
(2n2+ kn+ 4n+ k)(kn+ k− 2)

2(n+ 1)3k
, (1)

where k satisfies
c4k4+ c3k3+ c2k2+ c1k+ c0 = Y 2 (2)

for some rational number Y , with

c0 =16n4(n+ 1)2(n+ 2)2,

c1 =− 32n2(n+ 1)3(n+ 2)2,

c2 =8n(n+ 1)4(n+ 2)(3n2+ 4n− 2),

c3 =8n(n+ 1)5(n+ 2),

c4 =n2(n+ 1)6.

If we set

a∗ =
(n3+ 2n2− 2)(n3+ 2n2+ 2n+ 2)

2n(n+ 1)2(n3+ 2n2− 2n− 2)
, (3)

then for each n≥ 3, fn,a∗ ∈ D(n+ 2,2,Q).

2. Proof Of Theorem

We will derive, for each n ≥ 3, a parametrizing elliptic curve that specifies the values of a
described in our theorem. A confirmation that these curves have positive rank will be given as
well. Finally, by finding a point (x(n), y(n)) on this family of curves, we will obtain the value
of a∗ given in our theorem.
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Proof. The first derivative of f (x) is given by

f ′(x) = xn−1((n+ 2)x2− (n+ 1)(a+ 1)x + na).

In order for f ′(x) to have rational roots, the discriminant of the quadratic factor of f ′(x)must
equal the square of a rational number. This discriminant, written as a quadratic in a, is given
by

(n+ 1)2a2− (2n2+ 4n− 2)a+ (n+ 1)2. (4)

Using a standard approach, we parametrize the values of a for which (4) is equal to a rational
square and obtain

a =
(2n2+ kn+ 4n+ k)(kn+ k− 2)

2(n+ 1)3k
,

where k denotes a nonzero rational number. This establishes (1). Assuming that a has the
value given by (1), substituting it into f (x), then examining the second derivative f ′′(x), we
find another quadratic factor whose discriminant must equal the square of a rational number.
This discriminant, written as a quartic in k, is

n2(n+ 1)6k4+ 8n(n+ 1)5(n+ 2)k3+ 8n(n+ 1)4(n+ 2)(3n2+ 4n− 2)k2 (5)

− 32n2(n+ 1)3(n+ 2)2k+ 16n4(n+ 1)2(n+ 2)2.

Requiring this discriminant (5) to equal Y 2 for some rational number Y establishes (2). Con-
verting (2) to Weierstrass form yields

y2 = x3− 27n2(n+ 1)2(n+ 2)2(3n2+ 1)x + 54n3(n+ 1)3(n+ 2)3(3n− 1)(3n+ 1). (6)

For n ≥ 3, the elliptic curve (6) has positive rank. To see this, note that for fixed n ≥ 3,
the cubic on the right hand side of (6) has three rational roots contributing three points of
order two in the group Γ of rational points of (6). Therefore, from the known list of torsion
subgroups [8] we conclude that the torsion subgroup of Γ is of the form

Z2×Z2N , 1≤ N ≤ 4. (7)

Consider the point

P = (−3(n+ 2)(3n2+ n− 6)(n+ 1), 54(n− 1)(n+ 1)2(n+ 2)2)

in Γ. P has infinite order, as can be deduced by noting (7), forming the set {P, 2P, 4P}, and
checking that this set contains neither points of order 2, nor a point and its inverse. Thus
the elliptic curve (6) has positive rank for n ≥ 3, implying that there exists infinitely many
rational values of a such that fn,a(x) ∈ D(n+ 2,2,Q). Converting the point P by means of
birational transformations to a point on the quartic curve (2) yields a k-value of

k =
4n2(n+ 2)

(n+ 1)(n3+ 2n2− 2n− 2)
. (8)
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Substituting for k from (8) into (1) yields the value of a∗ given in the statement of our
theorem. The fact that a∗ has the property stated in our theorem is a consequence of the
following calculation.

f (x) =xn(x − 1)

�

x −
(n3+ 2n2− 2)(n3+ 2n2+ 2n+ 2)

2n(n+ 1)2(n3+ 2n2− 2n− 2)

�

,

f ′(x) =(n+ 2)xn−1

�

x −
n3+ 2n2+ 2n+ 2

2n(n+ 2)(n+ 1)

��

x −
n(n3+ 2n2− 2)

(n+ 1)(n3+ 2n2− 2n− 2)

�

,

f ′′(x) =(n+ 1)(n+ 2)xn−2

�

x −
n3+ 2n2− 2

2(n+ 2)(n+ 1)2

��

x −
(n− 1)(n3+ 2n2+ 2n+ 2)
(n+ 1)(n3+ 2n2− 2n− 2)

�

.

3. Rational Roots of Higher Derivatives

It was shown by Flynn [5] that if n = 3, then fn,a(x) /∈ D(n + 2, 3,Q) for all rational
values of a 6= 0,1. The idea of the proof was to form the product of the discriminants of the
irreducible quadratic factors of the first three derivatives of f3,a(x), and require this product to
be a square in Q. This leads to a study of the rational points on a genus 2 curve, from which
the result for n = 3 was deduced. We formed the corresponding products of discriminants
for 4 ≤ n ≤ 1500 and searched for rational points on the resulting genus 2 curves using the
routine "RationalPoints" in Magma [1]. For these values of n, no rational numbers a 6= 0,1
were found for which fn,a(x) ∈ D(n+ 2,3,Q). As an alternative approach, we assumed that
for some n ≥ 4, and some rational number a 6= 0,1, the third derivative of fn,a(x) has the
rational root x = 1. Substituting x = 1 into f ′′′(x) produces an equation for a which yields

a =
n+ 1

n− 1
.

By substituting this value of a into fn,a(x), we find that first two derivatives of fn,a(x) each
have a quadratic factor, which for purposes of having rational roots, must have their discrimi-
nants equal to the square of a rational number. These discriminants are, respectively,

8n(n+ 1) (9)

and
4n(3n− 2). (10)

Since gcd(n, n+ 1) = 1, forcing (9) to equal a square in Q implies that

(n, n+ 1) = (2a2, b2) or (a2, 2b2) (11)

for positive integers a and b. Combining (10) and (11) we deduce that either

4(b2− 1)(3b2− 5) (12)
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or
4(2b2− 1)(6b2− 5) (13)

is equal to a square in Q. The positive integral values of b for which (12) or (13) is equal
to square in Q can be determined by using the command "IntegralQuarticPoints" available in
Magma [1]. We find that for b = 29, (13) yields a square from which we determine n= 1681.
This leads to the following example of a degree 1683 polynomial fn,a(x) ∈ D(1683,3,Q).

f (x) =x1681(x − 1)
�

x −
841

840

�

,

f ′(x) =
x1680(1190x − 1189)(1188x − 1189)

840
,

f ′′(x) =
841x1679 (616x − 615) (2295x − 2296)

420
,

f ′′′(x) =2827442x1678(x − 1)(1683x − 1679).

We also substituted n= 1681 into the product of discriminants mentioned at the beginning of
this section. Using Magma, we searched for values of a for which this product of discriminants
was equal to a rational square. We found two values of a, namely a = 841

840
and a = 840

841
. The

first value of a gave rise to the previous example. The second value of a leads to another
polynomial in D(1683,3,Q) that is a scaled version of the previous example.

f (x) =x1681(x − 1)
�

x −
840

841

�

,

f ′(x) =
x1680(493x − 492)(2871x − 2870)

841
,

f ′′(x) =
2x1679 (9251x − 9225) (128673x − 128576)

841
,

f ′′′(x) =
10086x1678(841x − 840)(471801x − 470120)

841
.

We finish with two questions. Are there infinitely many pairs (n, a), where n≥ 3 is an integer
and a 6= 0, 1 is a rational number such that fn,a(x) ∈ D(n + 2,3,Q)? Does there exist an
integer n≥ 3 and a rational number a 6= 0, 1 such that fn,a(x) ∈ D(n+ 2,4,Q)?
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