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Abstract. A layered model of the lithosphere-asthenosphere system consisting of an elastic layer
overlying a viscoelastic half space is considered. A long, buried, inclined strike-slip fault is taken
to be situated in the medium with a bending at the surface of seperation. The mantle convection
induced a constant force on the fault resulting in a sudden movement across it. The movement
on the fault changes the stress pattern in the nearby region. A mathematical model incorporating
the essential features of the tectonic forces and the associated fault movement has been devel-
oped. Analytical expression for displacements, strains and stresses are obtained using suitable
mathematical techniques involving integral transforms, Green’s function etc. Computational work
indicates that a sudden movement across the fault as significant effect on the stress accumulation
in the region. The variation of shering stress with depth and distance from the fault show some
iteresting features. It is expected that such features will be usefull in understanding the mechanism
of eartquakes processes during the aseismic period.

Key Words and Phrases: Aseismic, Elastic layer, Viscoelastic half apace, Strike-slip faults,
Green’s function, Stress accumulation.

1. Introduction

The nature of ground deformation during the aseismic period in seismically active
regions in between two major seismic events should be studied in depth for a better un-
derstanding of the stress accumulation pattern in the region. Such studies can be carried
out by developing suitable mathematical models incorporating the essential features of the
local geological structure and the eartquake faults situated in the region. In the present
paper, the lithosphere-asthenosphere system has been taken to be represented by a layered
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model consisting of an elastic layer of finite depth overlying and is welded contact with a
viscoelastic half space. In most of the earlier studies (e.g.Steketee,J.A.[32],Maruyama,T.[17],
Rybicki,K. [28], Sato,R.[29, 30],Chinnery,M.A., [4, 5, 6, 7, 8, 9],Rani,S.,Sing,S.[26, 27],
Mukhopadhyay,et.al. [18, 19, 20, 21, 22, 23, 24],Brink,U.S.et.al., [1],Martin,F.L.,[15],Oglesby,
D.,[25], Ide,S., [11], Fowler,A.C.,[10]) the faults are usually taken as single planar fault,
but in reality the earthquake faults are not planar, but consisit of a number of planar
segments. In view of this a long, buried, strike-slip fault F having two adjacent planar
parts F1 and F2 is taken to be situated in the model with the part F1 in the layer and F2

in the half space with a common line of joint on the surface of separation. Tectonic forces,
primarily due to mantle convection, results in accumulation of shear stress in the vicinity
of the fault, which, in turn lead to a sudden movement across either F1 and / or F2 causing
earthquakes, when the accumulated stress exceeds the frictional and cohesive forces across
the fault. The sudden movement across the fault induces significant in changes the stress
accumulation pattern in the region. The present paper has stressed upon these aspect in
detail and tried to correlate such changes with the prediction of next major seismic event.

2. Formulation

We consider a simple theoretical model of the lithosphere-asthenosphere system with a
locked buried and long, non-planar strike-slip fault consisting of two planar parts F1 and
F2 with edges parallel to the free surface. The first part F1 which is situated in elastic layer
of depth H inclined at an angle θ1 with horizontal and second part F2 which is situated
in viscoelastic half-space inclined at an angle θ2 with horizontal.

We introduce a rectangular Cartesian coordinate system (y1, y2, y3) with origin o at
free surface with the plane free surface y3 = 0 and y1 axis is taken along the straight line
on the free surface which is parallel to upper edge of the fault. The boundary between
layer and half-space is given by y3 = H.

For convenience of the analysis we introduce another two rectangular system of Carte-
sian coordinates (y′1, y

′
2, y

′
3) and (y′′1 , y

′′
2 , y

′′
3) associate with the parts F1 and F2 of the fault

respectively with origin at o′(0, 0, d1) for first and o
′′(0, l1cos θ1, d1 + l1sin θ1) for second

part.
The plane of first part F1 of the fault is given by the plane y′2 = 0 and the plane of

second part F2 of the fault is given by the plane y′′2 = 0. With this choice of axes the
layered medium occupies the region 0 ≤ y3 ≤ H and the half space occupies the region
y3 ≥ H. While the fault is given by (F1 : y

′
2 = 0, 0 ≤ y′3 ≤ l1 and F2 : y

′′
2 = 0, 0 ≤ y′′3 ≤ l2).

The relations between (y1, y2, y3),(y
′
1, y

′
2, y

′
3) and (y′′1 , y

′′
2 , y

′′
3) are given by :

y1 = y′1
y2 = y′2sin θ1 + y′3cos θ1
y3 = −y′2cos θ1 + y′3sin θ1 + d1

and
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y1 = y′′1
y2 = y′′2sin θ2 + y′′3cos θ2 + l1cos θ1
y3 = −y′′2cos θ2 + y′′3sin θ2 + l1sin θ1

A section of the theoretical model by the plane y1 = 0 has been shown in the Fig : 1
in which the coordinate axes (y2, y3), (y

′
2, y

′
3) and (y′′2 , y

′′
3) have also been identified.

Figure 1: Section of the model by the plane y1 = 0 and coordinate system.

We assume that the length of the faults are large compared to their depths, so that the
displacements, stresses and strains may be taken to be independent of y1 and dependent
on y2, y3 and time t. With this assumption, the components of displacement, stress and
strain u1, (τ12, τ13) and (e12, e13) in the elastic layer and u′1, (τ

′
12, τ

′
13) and (e′12, e

′
13) in

the viscoelastic half space are found to be associated with the strike-slip movement of
the fault. The material of the half-space is assumed to be linearly viscoelastic and of the
Maxwell type.

We start with a situation when the model is in a quasi-static, aseismic state and is
undergoing slow, aseismic deformations, with a shear stress τ∞ in the model far away from
the fault maintained by some tectonic forces arising possibly due to mantle convection and
/ or other geological changes. We measure the time t from a suitable instant in the aseismic
state of the model, before any fault movement occurs.

For the elastic layer,the constitutive equations are taken to be

τ12 = µ1
∂u1
∂y2

τ13 = µ1
∂u1
∂y3

}
(1)

0 ≤ y3 ≤ H, −∞ < y2 <∞
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where µ1 is the rigidity of the elastic layer.
For the viscoelastic half-space of Maxwell type, the constitutive equations are

( 1η + 1
µ2

∂
∂t)τ

′
12 =

∂2u′
1

∂t∂y2

( 1η + 1
µ2

∂
∂t)τ

′
13 =

∂2u′
1

∂t∂y3

 (2)

y3 ≥ H, t ≥ 0, −∞ < y2 <∞

where µ2 and η are the effective rigidity and viscosity respectively. We consider quasi-
static aseismic deformation of the system when the inertial terms in the stress equations
of motion are small and can be neglected, as explained by Mukhopadhyay et.al.,[21]. For
such aseismic deformation the stresses satisfy the relations

∂τ12
∂y2

+ ∂τ13
∂y3

= 0 (0 ≤ y3 ≤ H)

∂τ ′12
∂y2

+
∂τ ′13
∂y3

= 0 (y3 ≥ H)

 (3)

From (1),(2) and (3) we find that

∂
∂t(∇

2u1) = 0

and
∂
∂t(∇

2u′1) = 0

which are satisfied if
∇2u1 = 0 (0 ≤ y3 ≤ H)
∇2u′1 = 0 (y3 ≥ H)

}
(4)

(t ≥ 0,−∞ < y2 <∞)

We assusme that the upper surface of the layer is stress-free and the upper layer is in
welded contact with the half-space. Then the displacements and stresses would satify the
following boundary conditions :

τ13 = 0 at y3 = 0
τ13 = τ ′13 at y3 = H
u1 = u′1 at y3 = H
τ ′13 → 0 as y3 → ∞

 (5)

(t ≥ 0,−∞ < y2 <∞)

We assume that tectonic forces result in a shear strain far away from the fault which
may changes with time. We then have the following boundary conditions :

e12 → (e12)0∞ + g(t)
e′12 → (e′12)0∞ + g(t)

}
(6)
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as |y2| → ∞ for t ≥ 0

where
(e12)0∞ = lim

|y2|→∞
(e12)0

(e′12)0∞ = lim
|y2|→∞

(e′12)0

where (e12)0, (e
′
12)0 are the values of e12 and e′12 at t = 0 and g(t) is a continuous function

of t such that g(0) = 0. Same g(t) is taken for both e12 and e′12, since the media are in
welded contact.

2.1. Initial conditions :

We measure time t from a suitable instant when the model is in aseismic state and there
is no seismic disturbance in it. (u1)0, (u

′
1)0 (τ12)0, (τ

′
12)0, (τ13)0, (τ

′
13)0, (e12)0, (e

′
12)0,

(e13)0, (e′13)0 are values of u, u′, τ12, τ
′
12, τ13, τ

′
13, e12, e

′
12,e13, e

′
13 at time t = 0 and

they satisfy the relations (1)–(6).

2.2. Displacements, stressses and strains in the absence of fault move-
ment :

We start with the situation when the system is in aseismic state. In this case displace-
ments, stresses and strains are continuous throughout the system and all the equations and
boundary conditions given in (1)–(6) are valid. To obtain the solutions for displacements,
stresses and strains in absence of any fault movement, we take Laplace transformations
of (1)–(6) with respect to time t. This gives us a boundary value problem which can be
solved easily. Finally, on inverting the Laplace transforms we get the following solutions

u1 = (u1)0 + y2g(t)
τ12 = (τ12)0 + µ1g(t)
τ13 = (τ13)0
e12 = (e12)0 + g(t)
τ12 = (τ12)0 + µ1sin θg(t)

 (7)

u′1 = (u′1)0 + y2g(t)

τ ′12 = (τ ′12)0exp(−
µ2t
η ) + µ2

t∫
0

g1(τ)exp{−µ2(t−τ)
η }dτ

τ ′13 = (τ ′13)0exp(−
µ2t
η )

e′12 = (e′12)0 + g(t)


(8)

where g1(t) =
d
dt{g(t)}

We assume that the strain e12 and e′12 gradually increases under the action of τ∞. So
that both g(t) and g1(t) are taken to be increasing functions of time t. From (7) and (8)
we find that both τ12 and τ ′12 increase with time. When the accumulated stresses exceeds
some threshold values the fault parts F1 and F2 undergo sudden movement resulting in
an eartquake.
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2.3. Displacements, stresses and strains after the restoration of aseismic
state folowing a sudden strike-slip movement across the fault part F
:

The sudden movement across F has two constitutive parts– movement across F1 and
at the same time a movement across F2. We first consider the effect of sudden movement
across F1. It is to be noted that due to the sudden fault movement across the fault F ,
the accumulated stress will be released at least to some extent and the fault becomes
locked again when the shear stress near the fault has sufficiently been released. For a
comparatively short period of time, during and aftter the sudden fault movement when
the seismic disturbances generated by this fault movement are still present in the vicinity
of the fault, the inertial forces are not small and can not be neglected. We leave out this
short period of time, during and immediately after sudden fault movement and consider
the model after the restoration of the aseismic state, which happens when the seismic
disturbances near the fault gradually disappear. We shall determine the displacements,
stresses and strains during the second phase of aseismic state with respect to new time
origin t = 0, denoting the instant at which this aseismic state has been restored in the
system after sudden fault movement.

We note that, for period t ≥ 0 (corresponding to the new phase of aseismic state of the
model re-established after the sudden fault movement), the inertial forces again become
very small and are therefore neglected, so that all the equations from (1)–(6) are valid in
this case also. The displacements, stresses and strains are continuous everywhere except
for the fault F1, F2. The displacement component u1 has a discontinuity which charac-
terises the sudden fault movement across the fault F1 given by the following conditions :

[u1] = U1f1(y
′
3) across F1 (y′2 = 0, 0 ≤ y′3 ≤ l1, t ≥ 0) (9)

where [u1] is the discontinuity of u1 across F1 defined as

[u1] = lim
y′2→0+

(u1)− lim
y′2→0−

(u1)

and f1(y
′
3) is a continuous function of y′3 giving the dependence of the relative displacement

across F1 on the depth along the fault part F1 and U1 is a constant, independent of y′2, y
′
3.

Similarly, for sudden movement across F2, we have :

[u′1] = U2f2(y
′′
3) across F2 (y′′2 = 0, 0 ≤ y′′3 ≤ l2, t ≥ 0) (10)

where [u′1] is the discontinuity of u′1 across F2 defined as

[u′1] = lim
y′′2→0+

(u′1)− lim
y′′2→0−

(u′1)

and f2(y
′′
3) is a continuous function of y′′3 giving the dependence of the relative displacement

across F2 on the depth along the fault part F2 and U2 is a constant, independent of y′′2 , y
′′
3 .

The stresses and strains τ12, τ13, τ
′
12, τ

′
13, e12, e

′
12 are continuous everywhere in the

model.
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We try to obtain displacements and stresses for t ≥ 0 (with new time origin) due to
movement across F1 in the form

u1 = (u1)1 + (u1)2
τ12 = (τ12)1 + (τ12)2
τ13 = (τ13)1 + (τ13)2
u′1 = (u′1)1 + (u′1)2
τ ′12 = (τ ′12)1 + (τ ′12)2
τ ′13 = (τ ′13)1 + (τ ′13)2


(11)

where (u1)1, (τ12)1, . . . , (τ
′
13)1 satisfy relations (1)–(8) are continuous everywhere in the

model. The solutions for (u1)1, (τ12)1, . . . , (τ
′
13)1 are therefore given by

(u1)1 = (u1)p + y2g(t)
(τ12)1 = (τ12)p + µ1g(t)
(τ13)1 = (τ13)p

 (12)

(u′1)1 = (u′1)p + y2g(t)

(τ ′12)1 = (τ ′12)pexp(−
µ2t
η ) + µ2

t∫
0

g1(τ)exp{−µ2(t−τ)
η }dτ

(τ ′13)1 = (τ ′13)pexp(−
µ2t
η )

 (13)

where (u1)p, (u′1)p, . . . , (τ ′13)p are the values of (u1)1, (u′1)1, . . . , (τ ′13)1 at time t = 0
(i.e. the new time origin) satisfying all conditions from (1)–(8) and g1(t) = d

dtg(t) and
(u1)2, (u′1)2, . . . , (τ ′13)2 satisfy the relations (1)–(5) and the dislocation condition (9)
together with the following conditions :

(e12) → 0 as |y2| → ∞ for t ≥ 0
(e′12) → 0 as |y2| → ∞ for t ≥ 0

}
(14)

Thus (u1)2, (u
′
1)2, . . . , (τ

′
13)2 satisfy the following relations

(τ12)2 = µ1
∂

∂y2
(u1)2

(τ13)2 = µ1
∂

∂y3
(u1)2

 (15)

−∞ < y2 <∞, 0 ≤ y3 ≤ H, t ≥ 0

( 1η + 1
µ2

∂
∂t)(τ

′
12)2 =

∂2(u′
1)2

∂t∂y2

( 1η + 1
µ2

∂
∂t)(τ

′
13)2 =

∂2(u′
1)2

∂t∂y3

 (16)

−∞ < y2 <∞, y3 ≥ H, t ≥ 0

∂
∂y2

(τ12)2 +
∂

∂y3
(τ13)2 = 0, 0 ≤ y3 ≤ H

∂
∂y2

(τ ′12)2 +
∂

∂y3
(τ ′13)2 = 0, y3 ≥ H

 (17)
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−∞ < y2 <∞, t ≥ 0

∇2(u1)2 = 0, 0 ≤ y3 ≤ H
∇2(u′1)2 = 0, y3 ≥ H

}
(18)

−∞ < y2 <∞, t ≥ 0

(τ13)2 = 0 at y3 = 0
(τ13)2 = (τ ′13)2 at y3 = H
(u1)2 = (u′1)2 at y3 = H
(τ ′13)2 → 0 as y3 → ∞

 (19)

−∞ < y2 <∞, t ≥ 0

(e12)2 → 0
(e′12)2 → 0

}
(20)

as |y2| → ∞, t ≥ 0

and
[(u1)2] = U1f1(y

′
3) across F1 : (y

′
2 = 0, 0 ≤ y′3 ≤ l1, t ≥ 0)

}
(21)

To obtain the solutions for (u1)2, (u
′
1)2, . . . , (τ

′
13)2 satisfying the above relations, we take

Laplace transforms of these relations with respect to t. The resulting boundary value prob-
lem involving (u1)2, (u′1)2, . . . , (τ

′
13)2, which are the Laplace transforms of (u1)2, (u

′
1)2, . . . ,

(τ ′13)2 respectively with respect to t, can be solved by using a modified form of Green’s
function technique developed by Maruyama,T.,[17] and Rybicki,K.,[28] as explained in
APPENDIX. On taking inverse Laplace transforms, we obtain the complete solutions for
(u1)2, (u

′
1)2, . . . , (τ

′
13)2 for t ≥ 0. Finally we obtain the complete solutions u1, u

′
1, . . . , τ

′
13

from (11) as follows :

u1(y2, y3, t) = (u1)p + y2g(t) +
U1
2πψ1(y2, y3, t)

e12(y2, y3, t) = (e12)p + g(t) + U1
2πψ2(y2, y3, t)

τ12(y2, y3, t) = (τ12)p + µ1g(t) +
µ1U1

2π ψ2(y2, y3, t)

τ13(y2, y3, t) = (τ13)p +
µ1U1

2π ψ3(y2, y3, t)
τ1′2′ = τ12sin θ1 − τ13cos θ1
u′1(y2, y3, t) = (u′1)p + y2g(t) +

U1
π ϕ1(y2, y3, t)

τ ′12(y2, y3, t) = (τ ′12)pexp(−
µ2t
η ) + µ2

t∫
0

g1(τ)exp{−µ2(t−τ)
η }dτ + U1

π ϕ2(y2, y3, t)

τ ′13(y2, y3, t) = (τ ′13)pexp(−
µ2t
η ) + U1

π ϕ3(y2, y3, t)

τ ′1′′2′′ = τ ′12sin θ2 − τ ′13cos θ2



(22)

where ψ1, ψ2, ψ3 and ϕ1, ϕ2, ϕ3 are given in APPENDIX.
Due to movement of fault part F2 the displacement component (u1)3, stress components

(τ12)3, (τ13)3 of elastic layer satisfies equations (1)–(5) and displacement component (u′1)3,
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stress components (τ ′12)3, (τ ′13)3 of viscoelastic half-space satisfies also equations (1)–(5)
and also they satisfies dislocations condition (9) together with the conditions

(e12)3 → 0 as |y2| → ∞ for t ≥ 0
(e′12)3 → 0 as |y2| → ∞ for t ≥ 0

Using the similar method we get the solution as

(u1)3(y2, y3, t) =
U2
π ψ

′
1(y2, y3, t)

(e12)3(y2, y3, t) =
U2
π ψ

′
2(y2, y3, t)

(τ12)3(y2, y3, t) =
µ1U2

π ψ′
2(y2, y3, t)

(τ13)3(y2, y3, t) =
µ1U2

π ψ′
3(y2, y3, t)

(u′1)3(y2, y3, t) =
U2
2πϕ

′
1(y2, y3, t)

(τ ′12)3(y2, y3, t) =
U2
2πϕ

′
2(y2, y3, t)

(τ ′13)3(y2, y3, t) =
U2
2πϕ

′
3(y2, y3, t)



(23)

where the explicit form of functions ψ′
1, ψ

′
2, ψ

′
3, ϕ

′
1, ϕ

′
2, ϕ

′
3 are given by (A30), (A31),

(A32), (A34), (A35), (A36) respectively in APPENDIX.
The complete solution is given by

u1 = (u1)1 + (u1)2 + (u1)3
e12 = (e12)1 + (e12)2 + (e12)3
τ12 = (τ12)1 + (τ12)2 + (τ12)3
τ13 = (τ13)1 + (τ13)2 + (τ13)3
u′1 = (u′1)1 + (u′1)2 + (u′1)3
τ ′12 = (τ ′12)1 + (τ ′12)2 + (τ ′12)3
τ ′13 = (τ ′13)1 + (τ ′13)2 + (τ ′13)3


(24)

It is found that for sudden movement the displacements, stresses and strains will be
finite and single valued everywhere in the model, if the following conditions are satisfied :
For f1(y

′
3) :

(i) f1(y
′
3), f

′
1(y

′
3) are continuous functions of y′3 for 0 ≤ y′3 ≤ l1

(ii) f ′1(0) = 0.

(iii) f ′′1 (y
′
3) is continuous in 0 ≤ y′3 ≤ l1 except for a finite number of points of finite

discontinuity in 0 ≤ y′3 ≤ l1 or, f ′′1 (y
′
3) is continuous in 0 < y′3 < l1 and there exist

real constants m,n < 1 such that (y′3)
mf ′′1 (y

′
3) → 0 or to a finite limit as y′3 → 0+

and that (l1 − y′3)
nf ′′(y′3) → 0 or to a finite limit as y′3 → l−0

1 .
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For f2(y
′′
3) :

(i) f2(y
′′
3), f

′
2(y

′′
3) are continuous functions of y′′3 for 0 ≤ y′′3 ≤ l2.

(ii) f2(l2) = 0 and f ′2(0) = f ′2(l2) = 0.

(iii) Either f ′′2 (y
′′
3) is continuous in 0 ≤ y′′3 ≤ l2 or,f ′′2 (y

′′
3) is continuous in 0 ≤ y′′3 ≤ l2

except for a finite number of points of finite discontinuity in 0 ≤ y′′3 ≤ l2 or, f ′′2 (y
′′
3)

is continuous in 0 < y′′3 < l2 and there exist real constants m,n < 1 such that
(l2 − y′′3)

mf ′′2 (y
′′
3) → 0 or to a finite limit as y′′3 → l−0

2 and (y′′3)
nf ′′2 (y

′′
3) → 0 or to a

finite limit as y′′3 → 0+0.

3. Results and Discussions

The following values of the model parameters are taken for numerical computations :
l1 = 10 km., l2= 12 km. are length of the fault parts F1 and F2 respectively.

H= width of the elastic layer= 40 km, representing the upper part of the lithosphere
(the crust).

µ1=the rigidity of the elastic layer= 3.0×1011 dyne/sq.cm.
µ2=the effective rigidity of the viscoelastic half space representing the asthenosphere

(up to depth of about 600 km)= 3.78×1011 dyne/sq.cm.
η= the viscosity of the half space = 3×1021 poise.
U1 = 40 cm and U2 = 40 cm, are slip across the fault F1 and F2 respectively.
The above values are taken from different books and research publications (e.g. Cathles,[2],

Chift,P.et.al.[3], Karato,S.[13]).
We carried out the numerical computations with the following choice of f1(y

′
3) and

f2(y
′′
3): f1(y

′
3) = 1 − (

y′3
l1
)2 + 1

2(
y′3
l1
)3 and f2(y

′′
3) =

(y′′23 −l22)
2

2l42
. The depth dependence of

f1 and f2 are so chose in a way that the continuity at the common edge be maintained
i.e.f1(at y

′
3 = l1) = f2(at y

′′
3 = l2) = k is chosen as 1

2 (may be taken otherewise). This
continuity condition however violated the conditions stated earlier for bounded stress
even at the common edge. However, stress very close to this common edge are found to
be bounded.

We compute the following quantities :

(i) Additional surface displacement due to fault movement

W= [u1 − (u1)1 − y2 g(t)]y3=0 at t = 0, just after the commencement of the fault
creep.

= U1
2πψ1 +

U2
π ψ

′
1 for different values of θ1 and θ2 (fig. 2 and 3).

(ii) Surface shear strain (Rs) given by

(Rs)=[e12 − (e12)p − g(t)]y3 = 0 at t = 0, just after the commencement of the fault
creep.

=U1
2πψ2 +

U2
π ψ

′
2 (fig. 4 and 5).
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(iii) Variation of shear stress τ12 with depth within the elastic layer and viscoelastic half
space are respectively given by

(τ12) = τ12 − (τ12)p − µ1 g(t)

=µ1U1

2π ψ2 +
µ1U2

π ψ′
2 (in fig. 6)

and

(τ12)
′ = τ ′12 − (τ ′12)pe

−µ2
η
t
+ µ2

t∫
0

g1(τ)exp{−µ2

η (t− τ)}dτ

=U1
π ϕ2 +

U2
2πϕ

′
2 (in fig. 7)

(iv) Variation of shear stress τ13 with depth within the elastic layer and viscoelastic half
space are respectively given by

(τ13) = τ13 − (τ13)p

=µ1U1

2π ψ3 +
µ1U2

π ψ′
3 (in fig. 8)

and

(τ13)
′ = τ ′13 − (τ ′13)pe

−µ2
η
t

=U1
π ϕ3 +

U2
2πϕ

′
3 (in fig. 9)

(v) The stress pattern changes due to the presence of an elastic layer over lying the
viscoelastic half space when compared with the half space model. (T12) represent
these changes due to presence of the layer given by :

T12 = sin θ1(
µ1U1

2π × series part of ψ2 +
µ1U2

π × series part of ψ′
2)− cos θ1(

µ1U1

2π ×
series part of ψ3 +

µ1U2

π × series part of ψ′
3) (in fig. 10)

Fig. 2 and 3 show the surface displacements due to the fault movements across F1 and
F2 after one year with different combinations of θ1 and θ2. For θ1 = θ2 = π

2 , the surface
displacement curve is anti-symmetric. In each case there are regions of displacements
is opposite directions with one maximum in each direction. The magnitude of surface
displacements is of the order of (-2) cm to (+3) cm, depending on θ1 and θ2. As we move
away from the fault |W | → 0 as expected.

Fig. 4 and 5 show the change in surface shear strain immediately after the sudden
movement across F1 and F2, for different values of θ1 and θ2. It is found from these figures
that movement across the part F1 is more pronounced on the change of surface shear shear
strain. In both the cases, the magnitude of strain is of the order of 10−7, which is good
agrement with the observed value. The changes in shear strain is found to be maximum
near the faults and gradually die out as we move away from the fault.

Fig. 6 indicates the changes in shear stress τ12 with depth in the layer 10 years after
the re-establishment of aseismic state following the sudden movement across F1 and F2

along a vertical at which y2 = 15 km. It is found that there is a region of marginal
accumulation upto a depth of about 15 km and thereafter the accumulated stresses reduce
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to some extent due to the sudden movement across the fault. The magnitude of stress
enhancement/ reduction depends on the angles θ1 and θ2.

Fig. 7 show the variations of shear stress τ12 with depth in the half space due to fault
movement along a vertical through y2 = 15 km one year after sudden movement. For
vertical fault (θ1 = θ2 = π

2 ), the changes are negligbily small. It is found that in most of
the region in the half space there are stress reduction up to a depth of about 70 km from
the the free surface. The magnitude of stress reduction however does not exceed 45 bars.
The reduction attains maximum values at a depth of about (30-45) km, that is just below
the lower edge of the fault segment F2. The effect of the fault movement dies out beyond
y3 = 70 km.

Fig. 8 and 9 show the changes in the stress component(τ13) induced by the fault
movement in the layer and in the half space respectively along vertical at which y2 = 15
km one year after the re-establishment the aseimic state following the sudden movement
across the fault. In the layer there are a region of stress accumulation upto a depth about
35 km followed by the narrow region of about 5 km depth where accumulated stress are
reduced due to fault movement. The angles of inclination of the fault parts F1 and F2 do
not have much influence on the changes in the stress pattern. In the layer however the
entire region is a stress reducing region indicating that accumulated stress in this region
will be reduced some extent due to the sudden movement of the faults. The effects become
negligibly small at a depth greater than or equal to 70 km from the free surface.

A comparative studying for layered model and half space model of the liyhosphere-
asthenosphere system :

Most often the liyhosphere-asthenosphere system are modelled by taking an elastic
layer overlying the viscoelastic half space. An attempt has been made to identify the
extent to which in stress accumulation pattern due to fault movement differ if we stress
upon a single half space model instead of a layered model.

In the expression for stresses given in equation (24) the part involving infinite series are
due to the presence of the elastic layer. Numerical computations show that contribution
of this part remain well below the value 0.1 bar at a point for which y2 = 2 km and
y3 = 10 km increasing very slowly with time ( 0.0002 bar/year(Fig. 10)). The ratio
of change in magnitude of τ12 for half space model and layered model is found to be
(400:1) indicating that a half space model quite reasonable for representing liyhosphere-
asthenosphere system.
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Figure 2: Additional surface displacement due to fault movement.

Figure 3: Additional surface displacement due to fault movement.
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Figure 4: Change in shear strain.

Figure 5: Change in shear strain.
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Figure 6: Variation of shear stress with depth in elastic layer.

Figure 7: Variation of shear stress with depth in viscoelastic half space.

Figure 8: Variation of shear stress with depth in elastic layer.
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Figure 9: Variation of shear stress with depth in viscoelastic half space.

Figure 10: Changes in stress pattern doe to presence of an elastic layer overlying the viscoelastic half space.
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Appendix

Displacements, stresses and strains after the restoration of aseismic state
following a sudden strike-slip movement across the fault– Method of so-
lution. Due to movement of fault part F1, we try to obtain the solutions
for displacements and stresses in the following form:

u1 = (u1)1 + (u1)2
τ12 = (τ12)1 + (τ12)2
τ13 = (τ13)1 + (τ13)2
u′1 = (u′1)1 + (u′1)2
τ ′12 = (τ ′12)1 + (τ ′12)2
τ ′13 = (τ ′13)1 + (τ ′13)2


(A1)

where (u1)1, (τ12)1, . . . , (τ
′
13)1 are given by (12) and (13). The components of (u1)2, (τ12)2,

. . . , (τ ′13)2 satisfying the relations (15)–(21). To obtain the solutions we take the Laplace
transforms of these relations with respect to t and we get

(τ̄12)2 = µ1
∂

∂y2
(ū1)2

(τ̄13)2 = µ1
∂

∂y3
(ū1)2

 (A2)

−∞ < y2 <∞, 0 ≤ y3 ≤ H, t ≥ 0

(τ̄ ′12)2 = µ̄2
∂

∂y2
(ū′1)2

(τ̄ ′13)2 = µ̄2
∂

∂y3
(ū′1)2

 (A3)

−∞ < y2 <∞, y3 ≥ H, t ≥ 0

where µ̄2 =
p

p
µ2

+ 1
η

∂(τ̄12)
∂y2

+ ∂(τ̄13)
∂y3

= 0 (0 ≤ y3 ≤ H)

∂(τ̄ ′12)
∂y2

+
∂(τ̄ ′13)
∂y3

= 0 (y3 ≥ H)

 (A4)

−∞ < y2 <∞, y3 ≥ H, t ≥ 0

∇2(ū1)2 = 0 (0 ≤ y3 ≤ H)

∇2(ū′1)2 = 0 (y3 ≥ H)

 (A5)

(t ≥ 0,−∞ < y2 <∞)
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(τ̄13)2 = 0 at y3 = 0
(τ̄13)2 = (τ̄ ′13)2 at y3 = H
(ū1)2 = (ū′1)2 at y3 = H
(τ̄ ′13)2 → 0 as y3 → ∞

 (A6)

−∞ < y2 <∞, t ≥ 0

(ē12)2 → 0
(ē′12)2 → 0

}
(A7)

as |y2| → ∞, t ≥ 0

and
[(ū1)2] =

U1
p f1(y

′
3) across F1 : (y

′
2 = 0, 0 ≤ y′3 ≤ l1, t ≥ 0)

}
(A8)

where {(ū1)2, . . . , (τ̄ ′13)2} =
∞∫
0

{(ū1)2, . . . , (τ̄ ′13)2}e−ptdt, p being the Laplace variable.

The boundary value problem (A1)–(A8) can be solved by using a modified Green’s
function technique developed by Maruyama (1966) and Rybicki (1971) and following them
we get

(ū1)2(Q) =

∫
F1

[(ū1)2(P )][G12(P,Q)dx3 −G13(P,Q)dx2] (A9)

where Q(y1, y2, y3) is any point in the layer and P (x1, x2, x3) is any point on the fault and
[(ū1)2(P )] is the magnitude of discontinuity in (ū1)2 across F1 at P is equal to U1

p f(y
′
3) in

our model. For the half space we have

(ū′1)2(Q1) =

∫
F1

[(ū′1)2(P )][G
′
12(P,Q1)dx3 −G′

13(P,Q1)dx2] (A10)

where Q1(y1, y2, y3) is any point in the half space.
In (A9)

G13(P,Q) = µ1
∂

∂x3
G1(P,Q)

G12(P,Q) = µ1
∂

∂x2
G1(P,Q)

 (A11)

where

G1(P,Q) = − 1
2πµ1

[ln
√

(x2 − y2)2 + (x3 − y3)2 +

ln
√

(x2 − y2)2 + (x3 + y3)2 +
∞∑
n=1

(µ1−µ̄2

µ1+µ̄2
)m{ln

√
(x2 − y2)2 + (x3 − 2mH − y3)2 +

ln
√

(x2 − y2)2 + (x3 − 2mH + y3)2 +

ln
√

(x2 − y2)2 + (x3 + 2mH − y3)2 +

ln
√

(x2 − y2)2 + (x3 + 2mH + y3)2}


(A12)
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Now P (x1, x2, x3) being a point on the fault F1, 0 ≤ x2 ≤ l1 cos θ1, 0 ≤ x3 ≤ l1 sin θ1
and x2 = x3 cot θ1. A change in coordinate axes from (x1, x2, x3) to (ξ′1, ξ

′
2, ξ

′
3) connected

by the relations x1 = ξ′1, x2 = ξ′2 sin θ1 + ξ′3 cos θ1 and x3 = −ξ′2 cos θ1 + ξ′3 sin θ1, is
intruduced so that ξ′2 = 0 and 0 ≤ ξ′3 ≤ l1 on F1.

Thus we get,

(ū1)2(Q) = U1
2πp

l1∫
0

f(ξ′3)[
y2sin θ1−(y3−d1)cos θ1

A1
+

y2sin θ1+(y3+d1)cos θ1
A2

+
∞∑

m=1
(µ1−µ̄2

µ1+µ̄2
)m{y2sin θ1−2mHcos θ1−(y3−d1)cos θ1

A3
+

y2sin θ1−2mHcos θ1+(y3+d1)cos θ1
A4

+
y2sin θ1+2mHcos θ1−(y3−d1)cos θ1

A5
+

y2sin θ1+2mHcos θ1+(y3+d1)cos θ1
A5

}]dξ′3

where
A1 = ξ′23 − 2ξ′3{y2cos θ1 + (y3 − d1)sin θ1}+ y22 + (y3 − d1)

2

A2 = ξ′23 − 2ξ′3{y2cos θ1 − (y3 − d1)sin θ1}+ y22 + (y3 − d1)
2

A3 = ξ′23 − 2ξ′3{y2cos θ1 + (y3 − d1)sin θ1 + 2mHsin θ1}+
y22 + (y3 − d1)

2 + 4(y3 − d1)sin θ1 + 4m2H2

A4 = ξ′23 − 2ξ′3{y2cos θ1 − (y3 + d1)sin θ1 + 2mHsin θ1}+
y22 + (y3 − d1)

2 − 4(y3 − d1)mH + 4m2H2

A5 = ξ′23 − 2ξ′3{y2cos θ1 + (y3 − d1)sin θ1 − 2mHsin θ1}+
y22 + (y3 − d1)

2 − 4(y3 − d1)mH + 4m2H2

A6 = ξ′23 − 2ξ′3{y2cos θ1 − (y3 + d1)sin θ1 − 2mHsin θ1}+
y22 + (y3 + d1)

2 + 4(y3 + d1)mH + 4m2H2

Taking inverse Laplace transform we get,

(u1)2 =
U1
2πψ1(y2, y3, t) (A13)

where

ψ1(y2, y3, t) =
l1∫
0

f1(ξ
′
3)[

y2sin θ1−(y3−d1)cos θ1
A1

+

y2sin θ1+(y3+d1)cos θ1
A2

]dξ′3+
∞∑

m=1
(αβ )

mAm(t)
l1∫
0

f1(ξ
′
3){

y2sin θ1−2mHcos θ1−(y3−d1)cos θ1
A3

+

y2sin θ1−2mHcos θ1+(y3+d1)cos θ1
A4

+
y2sin θ1+2mHcos θ1−(y3−d1)cos θ1

A5
+

y2sin θ1+2mHcos θ1+(y3+d1)cos θ1
A6

}dξ′3


(A14)

From (15) we get,
(τ12)2 =

µ1U1

2π
∂

∂y2
ψ1(y2, y3, t)
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= µ1U1

2π ψ2(y2, y3, t) (A15)

where

ψ2(y2, y3, t) =
l1∫
0

f1(ξ
′
3)[

ξ′23 sin θ1+{(y3−d1)2−y22}sin θ1+2y2(y3−d1)cos θ1−2ξ′3(y3−d1)

A2
1

+

ξ′23 sin θ1+{(y3+d1)2−y22}sin θ1−2y2(y3+d1)cos θ1+2ξ′3(y3+d1)

A2
2

]dξ′3+

∞∑
m=1

(αβ )
mAm(t)

l1∫
0

f1(ξ
′
3)[

1
A2

3
{ξ′23 sin θ1 + {(y3 − d1 + 2mH)2 − y22}×

sin θ1 + 2y2(y3 − d1 + 2mH)cos θ1−
2ξ′3(y3 − d1 + 2mH)}+
1
A2

4
{ξ′23 sin θ1 + {(y3 + d1 − 2mH)2 − y22}×

sin θ1 − 2y2(y3 + d1 − 2mH)cos θ1+
2ξ′3(y3 + d1 − 2mH)}+
1
A2

5
{ξ′23 sin θ1 + {(y3 − d1 − 2mH)2 − y22}×

sin θ1 + 2y2(y3 − d1 − 2mH)cos θ1−
2ξ′3(y3 − d1 − 2mH)}+
1
A2

6
{ξ′23 sin θ1 + {(y3 + d1 + 2mH)2 − y22}×

sin θ1 − 2y2(y3 + d1 + 2mH)cos θ1+
2ξ′3(y3 + d1 + 2mH)}]dξ′3



(A16)

and
(τ13)2 = µ1

∂
∂y3

(u1)2

= µ1U1

2π ψ3(y2, y3, t)

 (A17)
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where

ψ3(y2, y3, t) =
l1∫
0

f1(ξ
′
3)[

−ξ′23 cos θ1+{(y3−d1)2−y22}cos θ1−2y2(y3−d1)sin θ1+2ξ′3y2
A2

1
+

ξ′23 cos θ1+{y22−(y3+d1)2}cos θ1−2y2(y3+d1)sin θ1−2ξ′3y2
A2

2
]dξ′3+

∞∑
m=1

(αβ )
mAm(t)

l1∫
0

f1(ξ
′
3)[

1
A2

3
{−ξ′23 cos θ1 + 2ξ′3y2−

2y2(y3 − d1)sin θ1−
{y22 − (y3 − d1)

2}cos θ1−
4mH{y2sin θ1 − (y3 − d1)cos θ1}+
4m2H2cos θ1}+ 1

A2
4
{ξ′23 cos θ1 − 2ξ′3y2−

2y2(y3 + d1)sin θ1+
{y22 − (y3 + d1)

2}cos θ1+
4mH{y2sin θ1 + (y3 + d1)cos θ1}−
4m2H2cos θ1}+ 1

A2
5
{−ξ′23 cos θ1 + 2ξ′3y2−

2y2(y3 − d1)sin θ1−
{y22 − (y3 − d1)

2}cos θ1+
4mH{y2sin θ1 − (y3 − d1)cos θ1}+
4m2H2cos θ1}+ θ1}+ 1

A2
6
{ξ′23 cos θ1−

2ξ′3y2 − 2y2(y3 + d1)sin θ1+
{y22 − (y3 + d1)

2}cos θ1−
4mH{y2sin θ1 + (y3 + d1)cos θ1}−
4m2H2cos θ1}]dξ′3



(A18)

where

s = µ2

µ1
, α = µ1

µ2
− 1, β = µ1

µ2
+ 1, a1 =

µ1µ2
η(µ1 + µ2)

, b1 =
2µ1µ

2
2

η(µ21 − µ22)

en(z) = 1 + z
1! +

z2

2! + + zn

n! , e0(z) = 1,

Am(t) = 1 +
m∑
r=1

(
m
r

)
( 2s
1−s)

r{1− e−a1ten(a1t)}

Brm =
(
m
r

)
br1, Arm =

(
m
r

)
( b1a1 )

r

From the above solutions we can compute the strain

e12 =
∂u1
∂y2

(A19)

In case of half space
G′

13(P,Q1) = µ1
∂

∂x3
G′

1(P,Q1)

G′
12(P,Q1) = µ1

∂
∂x2

G′
1(P,Q1)
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where

G′
1(P,Q1) = − 1

π(µ1+µ̄2)
[log

√
(x2 − y2)2 + (x3 − y3)2 +

log
√
(x2 − y2)2 + (x3 + y3)2 +

∞∑
m=1

(µ1−µ̄2

µ1+µ̄2
)m{log

√
(x2 − y2)2 + (x3 + 2mH − y3)2 +

log
√

(x2 − y2)2 + (x3 + 2mH + y3)2}]


(A20)

(ū′1)2(Q1) =
U1
p

µ1

π(µ1+µ2)

∫
f1(ξ

′
3)[{

y2sin θ1−(y3−d1)cos θ1
A1

+ y2sin θ1+(y3+d1)cos θ1
A2

}+
∞∑

m=1
(µ1−µ̄2

µ1+µ̄2
)m{y2sin θ1−(y3−d1)cos θ1+2mHcos θ1

A5
+

y2sin θ1+(y3+d1)cos θ1+2mHcos θ1
A6

}]dξ′3
Therefore taking inverse Laplace transform we get,

(u′1)2(Q1) =
U1
π (1− s

1+se
−a1t)

l1∫
0

f1(ξ
′
3)[

y2sin θ1−(y3−d1)cos θ1
A1

+ y2sin θ1+(y3+d1)cos θ1
A2

]dξ′3+

U1
π

∞∑
m=1

(αβ )
m[1 +

m∑
r=1

(
m
r

)
( b1a1 )

r{1− e−a1ter−1(a1t)} − s
1+se

−a1t−

s
1+s

m∑
r=1

(
m
r

) br1t
r

Γ(r+1)e
−a1t]

l1∫
0

f1(ξ
′
3){

y2sin θ1−(y3−d1)cos θ1+2mHcos θ1
A5

+

y2sin θ1+(y3+d1)cos θ1+2mHcos θ1
A6

}]dξ′3

= U1
π ϕ1(y2, y3, t) (A21)

where

ϕ1(y2, y3, t) = (1− s
1+se

−a1t)
l1∫
0

f1(ξ
′
3)[

y2sin θ1−(y3−d1)cos θ1
A1

+

y2sin θ1+(y3+d1)cos θ1
A2

]dξ′3+
∞∑

m=1
(1−s
1+s)

m[1 +
m∑
r=1

(
m
r

)
( b1a1 )

r{1− e−a1ter−1(a1t)} − s
1+se

−a1t−

s
1+s

m∑
r=1

(
m
r

) br1t
r

Γ(r+1)e
−a1t]

l1∫
0

f1(ξ
′
3){

y2sin θ1−(y3−d1)cos θ1+2mHcos θ1
A5

+

y2sin θ1+(y3+d1)cos θ1+2mHcos θ1
A6

}]dξ′3


(A22)
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From (A3) we get

(τ̄ ′12)2 = µ̄2
∂

∂y2
(ū′1)2

= µ̄2U1

p
µ1

π(µ1+µ̄2)

l1∫
0

f1(ξ
′
3)[

ξ′23 sin θ1+{(y3−d1)2−y22}sin θ1+2y2(y3−d1)cos θ1−2ξ′3(y3−d1)

A2
1

+

ξ′23 sin θ1+{(y3+d1)2−y22}sin θ1−2y2(y3+d1)cos θ1+2ξ′3(y3+d1)

A2
2

]dξ′3+

µ̄2U1

p
µ1

π(µ1+µ̄2)

∞∑
m=1

(µ1−µ̄2

µ1+µ̄2
)m

l1∫
0

f1(ξ
′
3)[

1
A2

5
{ξ′23 sin θ1 + {(y3 − d1 − 2mH)2 − y22}×

sin θ1 + 2y2(y3 − d1 − 2mH)cos θ1−
2ξ′3(y3 − d1 − 2mH)}+
1
A2

6
{ξ′23 sin θ1 + {(y3 + d1 + 2mH)2 − y22}×

sin θ1 − 2y2(y3 + d1 + 2mH)cos θ1+
2ξ′3(y3 + d1 + 2mH)}]dξ′3

Taking inverse Laplace tranform,

(τ ′12)2 =
U1
π ϕ2(y2, y3, t) (A23)

where

ϕ2(y2, y3, t) =
µ2

1+se
−a1t

l1∫
0

f1(ξ
′
3)[

ξ′23 sin θ1+{(y3−d1)2−y22}sin θ1+2y2(y3−d1)cos θ1−2ξ′3(y3−d1)

A2
1

+

ξ′23 sin θ1+{(y3+d1)2−y22}sin θ1−2y2(y3+d1)cos θ1+2ξ′3(y3+d1)

A2
2

]dξ′3

+ µ2

1+s

∞∑
m=1

(1−s
1+s)

me−a1t(1 +
m∑
r=1

Brmtr

r! )×
l1∫
0

f1(ξ
′
3)[

1
A2

5
{ξ′23 sin θ1 + {(y3 − d1 − 2mH)2 − y22}sin θ1+

2y2(y3 − d1 − 2mH)cos θ1 − 2ξ′3(y3 − d1 − 2mH)}+
1
A2

6
{ξ′23 sin θ1 + {(y3 + d1 + 2mH)2 − y22}sin θ1−

2y2(y3 + d1 + 2mH)cos θ1 + 2ξ′3(y3 + d1 + 2mH)}]dξ′3



(A24)

Similarly,

(τ ′13)2 =
U1
π ϕ3(y2, y3, t) (A25)
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where,

ϕ3(y2, y3, t) =
µ2

1+se
−a1t

l1∫
0

f1(ξ
′
3)[

−ξ′23 cos θ1+{(y3−d1)2−y22}cos θ1−2y2(y3−d1)sin θ1+2ξ′3y2
A2

1
+

ξ′23 cos θ1−{(y3+d1)2−y22}cos θ1−2y2(y3+d1)sin θ1−2ξ′3y2
A2

2
]dξ′3

+ µ2

1+s

∞∑
m=1

(1−s
1+s)

me−a1t(1 +
m∑
r=1

Brmtr

r! )×
l1∫
0

f1(ξ
′
3)[

1
A2

5
{−ξ′23 cos θ1 + {(y3 − d1)

2 − y22}cos θ1−

2y2(y3 − d1)sin θ1 + 2ξ′3y2+
4mH{y2sin θ1 − (y3 − d1)cos θ1}+ 4m2H2cos θ1}+
1
A2

6
{ξ′23 cos θ1 + {(y3 + d1)

2 − y22}cos θ1−
2y2(y3 + d1)sin θ1 − 2ξ′3y2−
4mH{y2sin θ1 + (y3 + d1)cos θ1} − 4m2H2cos θ1}]dξ′3



(A26)

Due to movement of fault part F2 the displacement and stress components are (u1)3,
(u′1)3, (τ12)3, (τ13)3, (τ12′)3, (τ13′)3. Applying similar method taking Green’s function

G1(P,Q) = − 1
π(µ1+µ̄2)

[log
√

(x2 − y2)2 + (x3 − y3)2 +

log
√
(x2 − y2)2 + (x3 + y3)2 +

∞∑
m=1

(µ1−µ̄2

µ1+µ̄2
)m{log

√
(x2 − y2)2 + (x3 + 2mH − y3)2 +

log
√

(x2 − y2)2 + (x3 + 2mH + y3)2}]

For layered medium (y3 ≤ H)



(A27)

and

G′
1(P,Q1) = − 1

2π [
1
µ̄2

log
√

(x2 − y2)2 + (x3 − y3)2 +

1
µ̄2

µ̄2−µ1

µ̄2+µ1
log

√
(x2 − y2)2 + (x3 − 2H + y3)2 +

4µ1

(µ1+µ̄2)2
log

√
(x2 − y2)2 + (x3 + y3)2 +

4µ1

(µ1+µ̄2)2

∞∑
m=1

(µ1−µ̄2

µ1+µ̄2
)m log

√
(x2 − y2)2 + (x3 + 2mH + y3)2 ]

For viscoelastic half space (y3 ≥ H)



(A28)
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We get,
(u1)3(Q) = U2

π ψ
′
1(y2, y3, t)

(τ12)3 =
µ1U2

π ψ′
2(y2, y3, t)

(τ13)3 =
µ1U2

π ψ′
3(y2, y3, t)

 (A29)

where

ψ′
1(y2, y3, t) =

s
1+se

−a1t
l2∫
0

f2(ξ
′′
3 )[

(y2−l1cos θ1) sin θ2−(y3−H) cos θ2
B1

+

(y2−l1cos θ1) sin θ2+(y3+H) cos θ2
B2

]dξ′′3+

s
1+se

−a1t
∞∑

m=1
(1−s
1+s)

me−a1t(1 +
m∑
r=1

Brmtr

r! )×
l2∫
0

f2(ξ
′′
3 )[

(y2−l1cos θ1) sin θ2−(y3−H) cos θ2+2mHcos θ2
B5

+

(y2−l1cos θ1) sin θ2+(y3+H) cos θ2+2mHcos θ2
B6

]dξ′′3


(A30)

ψ′
2(y2, y3, t) =

s
1+se

−a1t
l2∫
0

f2(ξ
′′
3 )[

sin θ2
B1

+ sin θ2
B2

+

2{(y2−l1cos θ1) sin θ2−(y3−H) cos θ2}(l1cos θ1+ξ′′3 cos θ2−y2)

B2
1

+
2{(y2−l1cos θ1) sin θ2−(y3+H) cos θ2}(l1cos θ1+ξ′′3 cos θ2−y2)

B2
2

]dξ′′3

+ s
1+se

−a1t
∞∑

m=1
(1−s
1+s)

m(1 +
m∑
r=1

Brmtr

r! )×
l2∫
0

f2(ξ
′′
3 )[

sin θ2
B5

+ sin θ6
B6

+

2{(y2−l1cos θ1) sin θ2−(y3−H) cos θ2+2mHcos θ2}(l1cos θ1+ξ′′3 cos θ2−y2)

B2
5

+
2{(y2−l1cos θ1) sin θ2+(y3+H) cos θ2+2mHcos θ2}(l1cos θ1+ξ′′3 cos θ2−y2)

B2
6

]dξ′′3



(A31)
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ψ′
3(y2, y3, t) =

s
1+se

−a1t
l2∫
0

f2(ξ
′′
3 )[− cos θ2

B1
+ cos θ2

B2
+

2{(y2−l1cos θ1) sin θ2−(y3−H) cos θ2}(H+ξ′′3 sin θ2−y3)

B2
1

−
2{(y2−l1cos θ1) sin θ2+(y3+H) cos θ2}(H+ξ′′3 sin θ2+y3)

B2
2

]dξ′′3

+ s
1+se

−a1t
∞∑

m=1
(1−s
1+s)

m(1 +
m∑
r=1

Brmtr

r! )×
l2∫
0

f2(ξ
′′
3 )[− cos θ2

B5
+ cos θ2

B6
+

2{(y2−l1cos θ1) sin θ2−(y3−H) cos θ2−2mHcos θ2}(H+2mH+ξ′′3 sin θ2−y3)

B2
5

−
2{(y2−l1cos θ1) sin θ2+(y3+H) cos θ2+2mHcos θ2}(H+2mH+ξ′′3 sin θ2+y3)

B2
6

]dξ′′3



(A32)

and
(u′1)3(Q1) =

U2
2πϕ

′
1(y2, y3, t)

(τ ′12)3 =
U2
2πϕ

′
2(y2, y3, t)

(τ ′13)3 =
U2
2πϕ

′
3(y2, y3, t)

 (A33)

where

ϕ′1(y2, y3, t) =
l2∫
0

f2(ξ
′′
3 )[

(y2−l1cos θ1)sin θ2−(y3−H)cos θ2
B1

+

( 2s
1+se

−a1t − 1) (y2−l1cos θ1)sin θ2+(y3−H)cos θ2
B7

+

(1− α2

β2A2(t))
(y2−l1cos θ1)sin θ2+(y3+H)cos θ2

B2
+

{
∞∑

m=1
(αβ )

mAm(t)−
∞∑

m=1
(αβ )

m+2Am+2(t)}×
(y2−l1cos θ1)sin θ2+(y3+H)cos θ2+2mHcos θ2

B6
]dξ′′3


(A34)
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ϕ′2(y2, y3, t) =
l2∫
0

f2(ξ
′′
3 )µ2e

−µ2t
η [ sin θ2

B1
+

2{(y2−l1cos θ1)sin θ2−(y3−H)cos θ2}(l1cos θ1+ξ′′3 cos θ2−y2)

B2
1

]dξ′′3+

µ2(e
−µ2t

η − 2
1+se

−a1t)
l2∫
0

f2(ξ
′′
3 )[

sin θ2
B7

+

2{(y2−l1cos θ1)sin θ2+(y3−H)cos θ2}(l1cos θ1+ξ′′3 cos θ2−y2)

B2
7

]dξ′′3+

{ 4µ2

1+se
−a1t − µ1 + µ1(

α
β )

2A2(t)}
l2∫
0

f2(ξ
′′
3 )[

sin θ2
B2

+

2{(y2−l1cos θ1)sin θ2+(y3+H)cos θ2}(l1cos θ1+ξ′′3 cos θ2−y2)

B2
2

]dξ′′3+
∞∑

m=1
{ 4µ2

1+s(
1−s
1+s)

me−a1t(1 +
m∑
r=1

Brmtr

r! )− µ1(
α
β )

mAm(t)+

µ1(
α
β )

m+2Am+2(t)}
l2∫
0

f2(ξ
′′
3 )[

sin θ2
B6

+

2{(y2−l1cos θ1)sin θ2+(y3+H)cos θ2+2mHcos θ2}(l1cos θ1+ξ′′3 cos θ2−y2)

B2
6

]dξ′′3



(A35)

ϕ′3(y2, y3, t) = µ2e
−µ2t

η

l2∫
0

f2(ξ
′′
3 )[− cos θ2

B1
+

2{(y2−l1cos θ1)sin θ2−(y3−H)cos θ2}(H+ξ′′3 cos θ2−y3)

B2
1

]dξ′′3+

µ2(e
−µ2t

η − 2
1+se

−a1t)
l2∫
0

f2(ξ
′′
3 )[

cos θ2
B7

−
2{(y2−l1cos θ1)sin θ2+(y3−H)cos θ2}(H+ξ′′3 cos θ2−2H+y3)

B2
7

]dξ′′3+

{ 4µ2

1+se
−a1t − µ1 + µ1(

α
β )

2A2(t)}
l2∫
0

f2(ξ
′′
3 )[

cos θ2
B2

−
2{(y2−l1cos θ1)sin θ2+(y3+H)cos θ2}(H+ξ′′3 cos θ2+y3)

B2
2

]dξ′′3+
∞∑

m=1
{ 4µ2

1+s(
1−s
1+s)

me−a1t(1 +
m∑
r=1

Brmtr

r! )− µ1(
α
β )

mAm(t)+

µ1(
α
β )

m+2Am+2(t)}
l2∫
0

f2(ξ
′′
3 )[

cos θ2
B6

−
2{(y2−l1cos θ1)sin θ2+(y3+H)cos θ2+2mHcos θ2}(H+ξ′′3 cos θ2+2mH+y3)

B2
6

]dξ′′3



(A36)
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where

B1 = ξ′′23 − 2ξ′′3{(y2 − l1cosθ1)cos θ2 + (y3 −H)sin θ2}+
(y3 −H)2 + (y2 − l1cos θ1)

2

B2 = ξ′′23 − 2ξ′′3{(y2 − l1cosθ1)cos θ2 − (y3 +H)sin θ2}+
(y3 +H)2 + (y2 − l1cos θ1)

2

B5 = ξ′′23 − 2ξ′′3{(y2 − l1cosθ1)cos θ2 + (y3 −H)sin θ2 − 2mHsin θ2}+
(y3 −H)2 + (y2 − l1cos θ1)

2 + 4m2H2 − 4mH(y3 −H)
B6 = ξ′′23 − 2ξ′′3{(y2 − l1cosθ1)cos θ2 − (y3 +H)sin θ2 − 2mHsin θ2}+

(y3 +H)2 + (y2 − l1cos θ1)
2 + 4m2H2 + 4mH(y3 +H)

B7 = ξ′′23 − 2ξ′′3{(y2 − l1cosθ1)cos θ2 − (y3 −H)sin θ2}+
(y3 −H)2 + (y2 − l1cos θ1)

2



(A37)


