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Abstract. Basic object of research in this paper are systems differential equations with variable struc-
ture and impulses. Switching moments, in which a change of the structure and impulsive effects on the
solutions are determined by means of the switching hyperplanes, belonging to the phase space system.
Changing the structure and impulsive effects on the solutions is performed at the switching moments,
which are determined by the switching hyperplanes of phase space system.
The switching moments coincide with the moments, when the trajectory of corresponding initial prob-
lem meets the switching hyperplanes.
The main aim of this studies is finding the sufficient conditions for continuous dependence of the
solutions of systems differential equations, specified above.
We will clarify that:

• The solutions are dying due to the impulsive effects;

• Continuous dependence is on the perturbations in initial conditions and impulsive effects;

• Continuous dependence is on an arbitrary closed interval, which is contained in maximum inter-
val of existence of the solutions.
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1. Introduction

The applications of differential equations with variable structure (without impulsive ef-
fects) are primarily in the control theory: [6, 11, 14, 17, 18, 21, 26, 29].

Impulsive equations (with fixed structure) are used most commonly for describing and
study development of dynamic processes, subjected to the discrete in time external influences:
[1–5, 12–16, 19, 20, 22, 24, 25, 27, 28, 30].

Differential equations with variable structure and impulses are introduced in [23]. Some
qualitative characteristics of their solutions are studied in [7–9, 14].

The following initial problem is the main object of investigation

d x

d t
= fi (t, x) , if 〈ai , x (t)〉 6= αi , i.e. t i−1 < t < t i , (1)

〈ai , x
�

t i
�

〉= αi , i = 1, 2, . . . , (2)

x
�

t i + 0
�

= x
�

t i
�

+ Ii
�

x
�

t i
��

, (3)

x
�

t0
�

= x0, (4)

where

• The functions fi : R+× D −→ Rn and domain D ⊂ Rn;

• The vectors ai =
�

a1
i , a2

i , . . . , an
i

�

∈ Rn, ai 6= 0 and the constants αi ∈ R;

• 〈., .〉 is the Euclidean scalar product in Rn;

• The switching functions ϕi = 〈ai , x〉 −αi , i = 1, 2, . . . ;

• The switching sets Φi =
�

x ∈ D; 〈ai , x〉= αi
	

, i = 1, 2, . . . , are parts of the hyper-
planes, situated in phase space D of the system;

• The functions Ii : D −→ Rn and
�

Id + Ii
�

: D −→ D;

• The initial point
�

t0, x0
�

∈ R+× D and 〈a1, x0〉 6= α1.

The solution of initial problem is a piecewise continuous function with first type points
of discontinuity: t1, t2, . . .. It is continuous from the left at all points in its domain. The
points t1, t2, . . . are named moments of switching. The functions Ii , i = 1,2, . . . , are called
impulsive. As seen from (1) and (2), the functions ϕi (x) = 〈ai , x〉 − αi are linear, and their
corresponding sets:

Φi =
¦

x ∈ D; 〈ai , x〉= a1
i x1+ a2

i x2+ . . .+ an
i xn = αi

©

, i = 1, 2, . . .

are parts of the hyperplanes, situated in the phase space D. The functions and their corre-
sponding sets Φi , i = 1,2, . . . , are named switching functions and switching sets.

The following notations will be used:

• f =
�

f1, f2, . . .
	

, ϕ =
�

ϕ1,ϕ2, . . .
	

, I =
�

I1, I2, . . .
	

;
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• x
�

t; t0, x0, f ,ϕ, I
�

is the solution of problem (1), (2), (3), (4);

• x i
�

t; t0, x0
�

is the solution of problem with fixed structure and without impulses

d x

d t
= fi (t, x) , x

�

t0
�

= x0, i = 1, 2, . . . ; (5)

• The curve γ
�

t0, x0, f ,ϕ, I
�

=
�

x
�

t; t0, x0, f ,ϕ, I
�

, t ∈ J
�

t0, x0, f ,ϕ, I
�	

is the trajec-
tory of problem considered, where J(t0, x0, f ,ϕ, I) is the maximum interval of existence
of the solution;

• The curve γi
�

t0, x0
�

=
�

x
�

t; t0, x0
�

, t ∈ J
�

t0, x0, fi
�	

is the trajectory of problem (5),
where J

�

t0, x0, fi
�

is the maximum interval of existence of the solution, i = 1, 2 . . .;

• ‖ . ‖ and 〈., .〉 are the Euclidean norm and scalar product, respectively in Rn.

Further, the following conditions will be used:

H1. The functions f ∈ C[R+× D,Rn], i = 1,2, . . ..

H2. The functions Ii ∈ C[Φi ,Rn] and
�

Id + Ii
�

: Φi −→ D, i = 1, 2, . . ..

H3. For any point
�

t0, x0
�

∈ R+ × D and for each i = 1,2, . . . the solution of initial problem
(5) exists and is unique for t ≥ t0.

H4. The equalities:
‖ ai ‖= 1, i = 1,2, . . .

are fulfilled;

H5. The inequalities:

(〈ai , (Id + Ii−1)(x)〉 −αi).〈ai , fi(t, x)〉< 0, (t, x) ∈ R+× D, i = 1,2, . . .

are valid, where I0(x) = 0 for x ∈ D.

H6. There exist constants C〈ai , fi〉 > 0 such that

(∀(t, x) ∈ R+× D) =⇒ |〈ai , fi(t, x)〉| ≥ C〈ai , fi〉, i = 1, 2, . . . .

H7. There exist constants Cai
> 0 such that

(∀x ∈ Φi) =⇒ |〈ai+1, (Id + Ii)(x)〉 −αi+1| ≤ Cai+1
, i = 1, 2, . . . .

H8. The series
∑∞

i=1
Cai+1

C〈ai+1, fi+1〉
is convergent.

H9. There exist constants C fi
> 0 such that

(∀(t, x) ∈ R+× D) =⇒‖ fi(t, x) ‖≤ C fi
, i = 1, 2, . . . .

H10. There exist constants CLipIi
> 0 such that

(∀x
′
, x
′′
∈ D) =⇒ |Ii(x

′
)− Ii(x

′′
)| ≤ CLipIi

‖ x
′
− x

′′
‖, i = 1, 2, . . . .
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2. The Death of Solutions

Definition 1. We say that the solution of system (1), (2), (3) dies due to the impulsive effects, if:

1. It is fulfilled

(∀t0 ≥ 0) (∀x0 ∈ D) (∀i = 1, 2, . . .) =⇒ J
�

t0, x0, fi
�

= [t0,∞);

2. We have
(∀t0 ≥ 0) (∀x0 ∈ D)

(∃I1 = I1(t0, x0), I2 = I2(t0, x0), . . . ; I1, I2, . . . : D −→ Rn)

(∃t0 = t0(t0, x0, I1, I2, . . .) = const ∈ R, t0 > t0):

J
�

t0, x0, f ,ϕ, I
�

= [t0, t0).

In other words, it is satisfied:

1. For every choice of an initial point from the extended phase space of system under consideration
and for any fixed right side, belonging to the set of right sides for the basic system (1), the
solution of initial problem with fixed structure and without impulses is continuable up to
infinity;

2. For every choice of an initial point from the extended phase space, the switching functions
exist, such that the solution of corresponding problem with variable structure and impulses
(1), (2), (3), (4) has a limited maximum interval of existence.

Theorem 1. Let the conditions H1–H6 be satisfied.
Then the trajectory of problem (1), (2), (3), (4) meets each of the hyperplanes Φi , i = 1,2, . . ..

Proof. We will show that the trajectory of problem meets the hyperplane Φ1. From H5 it
follows that at least one of the following two cases is fulfilled:

Case 1. (〈a1, x〉 −α1)< 0, x ∈ D and 〈a1, f1(t, x)〉> 0, (t, x) ∈ R+× D ;
Case 2. (〈a1, x〉 −α1)> 0, x ∈ D and 〈a1, f1(t, x)〉< 0, (t, x) ∈ R+× D.
We will discuss Case 2. The first case is considered similarly. Function

ψ1(t) = 〈a1, x1(t; t0, x0)〉 −α1

is introduced, where x1(t; t0, x0) is the solution of problem (5) for i = 1. Function ψ1 is
defined for J

�

t0, x0, fi
�

= [t0,∞). We have

ψ1(t0) = 〈a1, x1(t0; t0, x0)〉 −α1 = 〈a1, x0〉 −α1 > 0.

According to condition H6, it is satisfied

d

d t
ψ1(t) =〈a1,

d

d t
x1(t; t0, x0)〉
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=〈a1, f1(t, x1(t; t0, x0))〉
=− |〈a1, f1(t; x1(t; t0, x0))〉|
≤− C〈a1, f1〉

=− const < 0.

By the facts

ψ1(t0)> 0 and
d

d t
ψ1(t)≤− const < 0, t > t0,

it follows that there exists a point t1 > t0, such that

〈a1, x1(t1; t0, x0)〉 −α1 =ψ1(t1) = 0.

It means that at the moment t1, the trajectory γ1(t0, x0) meets hyperplane Φ1. Given

γ(t0, x0, f ,ϕ, I)≡ γ1(t0, x0) for t0 ≤ t ≤ t1,

we conclude that the trajectory of problem (1), (2), (3), (4) meets also the hyperplane Φ1 at
moment t1.

Assume that, the trajectory of problem investigated consistently meets the hyper-planes
Φ1,Φ2, . . . ,Φi , respectively in the moments t1, t2, . . . , t i , at which t1 < t2 <, . . . ,< t i is ful-
filled. We will show that the trajectory γi+1(t0, x(t i + 0; t0, x0)) meets hyperplane Φi+1,
whence it follows that the same is true for the studied trajectory γ(t0, x0, f ,ϕ, I). Again,
take into account condition H5, without loss of generality, we assume that the following in-
equalities are valid:

〈ai+1(Id + Ii)(x)〉 −αi+1 > 0, x ∈ D and 〈ai+1, fi+1(t, x)〉< 0, (t, x) ∈ R+× D. (6)

We coincide the function ψi+1, defined by

ψi+1(t) = 〈ai+1, x i+1(t; t i , x(t i + 0; t0, x0))〉 −αi+1, t ≥ t i . (7)

We have

ψi+1(t) =〈ai+1, x i+1(t i; t i , x(t i + 0; t0, x0, f ,ϕ, I))〉 −αi+1

=〈ai+1, x(t i + 0; t0, x0, f ,ϕ, I)〉 −αi+1

=〈ai+1, x(t i; t0, x0, f ,ϕ, I) + Ii(x(t i; t0, x0, f ,ϕ, I))〉 −αi+1

=〈ai+1, (Id + I)(x(t i; t0, x0, f ,ϕ, I))〉 −αi+1 > 0.

When t > t i , it is fulfilled

d

d t
ψi+1(t) =〈ai+1, fi+1(t, x i+1(t; t0, x(t; t0, x0, f ,ϕ, I)))〉

=− |〈ai+1, fi+1(t, x i+1(t; t0, x(t; t0, x0, f ,ϕ, I)))〉|
≤− C〈ai+1, fi+1〉
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=− const < 0.

Therefore, there exists a point t i+1 > t i such that

ψi+1(t i+1) = 0⇔〈ai+1, x i+1(t i+1; t0, x(t i + 0; t0, x0, f ,ϕ, I))〉 −αi+1 = 0.

The last equality shows that the trajectory γi+1(t0, x(t i + 0; t0, x0, f ,ϕ, I)) meets the hyper-
plane Φi+1 at the moment t i+1. This also applies to the trajectory γ(t0; x0, f ,ϕ, I).

The proof of a theorem follows by induction.
The theorem is proved.

Theorem 2. Let the conditions H1–H7 be satisfied.
Then the following estimates are valid

t i+1− t i ≤
Cai+1

C〈ai+1, fi+1〉
, i = 1, 2, . . . .

Proof. Let i be arbitrary natural number. Consider the function ψi+1, defined by equality
(7). Directly, we get the next equality

ψi+1(t) =







〈ai+1, x(t i + 0; t0, x0, f ,ϕ, I)〉 −αi+1

= 〈ai+1, x(t i; t0, x0, f ,ϕ, I) + Ii(x(t i; t0, x0, f ,ϕ, I))〉 −αi+1, t = t i;

〈ai+1, x(t; t0, x0, f ,ϕ, I)〉 −αi+1, t i < t ≤ t i+1.

Suppose again that the inequalities (6) are valid. Under condition H7, we find

ψi+1(t i+1)−ψi+1(t i) =〈ai+1, x(t i+1; t0, x0, f ,ϕ, I)〉 − 〈ai+1, x(t i + 0; t0, x0, f ,ϕ, I)〉
=− 〈ai+1, x i(t i; t0, x0) + Ii(x(t i; t0, x0))〉+αi+1

=|〈ai+1, (Id + Ii)(x i(t i; t0, x0))〉 −αi+1|
≤Cai+1

. (8)

On the other hand, using the conditions H6 and H4, we consistently obtain

ψi+1(t i+1)−ψi+1(t i) =
d

d t
ψi+1(t

∗)(t i+1− t i)

=
d

d t
�

〈ai+1, x(t∗; t0, x0, f ,ϕ, I)〉 −αi+1
�

.(t i+1− t i)

=
d

d t
�

〈ai+1, x i+1(t
∗; t0, x(t i + 0; t0, x0, f ,ϕ, I))〉 −αi+1

�

.(t i+1− t i)

=〈ai+1, fi+1(t
∗, x i+1(t

∗; t0, x(t i + 0; t0, x0, f ,ϕ, I)))〉.(t i+1− t i)

≥ ‖ ai+1 ‖ .C〈ai+1, fi+1〉.(t i+1− t i)

=C〈ai+1, fi+1〉.(t i+1− t i), (9)

where the point t∗ satisfies inequalities t i < t∗ < t i+1. By (8) and (9) it follows the wanted
estimate.

The theorem is proved.
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Theorem 3. Let the conditions H1–H8 be satisfied.
Then the solutions of system (1), (2), (3) die due to the impulsive effects.

Proof. It is valid

J(t0, x0, f ,ϕ, I) = [t0, t1]
⋃

(t1, t2]
⋃

(t2, t3]
⋃

. . .= [t0, t0),

where

t0 = lim
i→∞

t i

=t1− lim
i→∞

�

(t2− t1) + (t3− t2) + . . .+ (t i − t i−1)
�

=t1+
∞
∑

i=1

(t i+1− t i)

≤t1+
∞
∑

i=1

Cϕi+1

C〈ai+1, fi+1〉
<∞.

The theorem is proved.

3. Continuous Dependence on the Impulsive Effects

The perturbed initial problem is introduced:

d x∗

d t
= fi(t, x∗), if 〈ai , x∗(t)〉 6= αi , i.e. t∗i−1 < t < t∗i , (10)

〈ai , x∗(t)〉= αi , i = 1, 2, . . . , (11)

x∗(t∗i + 0) = x∗(t∗i ) + I∗i (x
∗(t∗i )), (12)

x∗(t∗0) = x∗0, (13)

where

• The functions I∗i : D −→ Rn, (Id + I∗i ) : D −→ D and I∗ = {I∗1, I∗2, . . .};

• The initial point (t∗0, x∗0) ∈ R
+× D and 〈a1, x∗0〉 6= αi;

• The solution of problem (10), (11), (12), (13) is denoted by x∗(t; t∗0, x∗0, f ,ϕ, I∗);

• The maximum interval of existence of the solution of problem (10), (11), (12), (13) is
denoted by J∗(t∗0, x∗0, f ,ϕ, I∗);

Definition 2. We say that the dying solution x(t; t0, x0, f ,ϕ, I) of initial problem (1), (2), (3),
(4) depends continuously on:
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• The initial condition, if I∗ = I and

(∀ε = const > 0) (∀η= const > 0) (∀T ∈ J(t0, x0, f ,ϕ, I)
⋂

J∗(t∗0, x∗0, f ,ϕ, I))
(∃δ = δ(ε,η, T, t0, x0)> 0) (∃ηi = ηi(ε,η, T, t0, x0)≥ 0, i = 1,2, . . . ,

∑∞
i=1ηi < η) :

(∀t∗0 ∈ R
+, |t∗0− t0|< δ)(∀x∗0 ∈ D

⋂

Bδ(x0), 〈a1, x∗0〉 6= α1)
=⇒‖ x∗(t; t∗0, x∗0, f ,ϕ, I)− x(t; t0, x0, f ,ϕ, I) ‖< ε,

t ∈
�

tmax
0 , T

�

, |t − t i|> ηi , i = 1,2, . . . ;

• The impulsive effects, if (t∗0, x∗0) = (t0, x0) and

(∀ε = const > 0) (∀η= const > 0)(∀T ∈ J(t0, x0, f ,ϕ, I)
⋂

J∗(t0, x0, f ,ϕ, I∗))
(∃δ = δ(ε,η, T, I)> 0) (∃ηi = ηi(ε,η, T, I)≥ 0, i = 1,2, . . . ,

∑∞
i=1ηi < η) :

(∀I∗i : D −→ Rn, ‖ I∗i (x)− Ii(x) ‖< δ, x ∈ D, i = 1, 2, . . .)
=⇒‖ x∗(t; t0, x0, f ,ϕ, I∗)− x(t; t0, x0, f ,ϕ, I) ‖< ε,

t ∈
�

t0, T
�

, |t − t i|> ηi , i = 1, 2, . . . .

Theorem 4. Let the conditions H1, H3, H5, H6, H9 and H10 be satisfied for i = 1.
Then

(∃C1, C2, C3 ∈ R) :
(∀ω= const > 0) (∃δ = δ(ω), 0< δ ≤ω) :

(∀t∗0 ∈ R
+, |t∗0− t0|< δ)(∀x∗0 ∈ D, ‖ x∗0 − x0 ‖< δ)

(∀I∗1 ∈ C[D,Rn], ‖ I∗1(x)− I1(x) ‖< δ for x ∈ D)

it follows:

1. The solution x∗(t; t∗0, x∗0, f ,ϕ, I∗) of system (10), (11), (12), (13) cancels the switching func-
tion ϕ1 at a point t∗1;

2. ‖ x∗(t; t∗0, x∗0, f ,ϕ, I∗)− x(t; t0, x0, f ,ϕ, I) ‖≤ω, tmax
0 < t ≤ tmin

1 ;

3. |t∗1− t1| ≤ C1ω;

4. ‖ x∗(t∗1; t∗0, x∗0, f ,ϕ, I∗)− x(t1; t0, x0, f ,ϕ, I) ‖≤ C2ω;

5. ‖ x∗(t∗1+ 0; t∗0, x∗0, f ,ϕ, I∗)− x(t1+ 0; t0, x0, f ,ϕ, I) ‖≤ C3ω.

Proof. At first, we will show that the trajectory of perturbed problem meets the hyperplane
Φ1. Based on condition H5, we suppose that the next inequalities are valid:

(〈a1, x〉 −α1)< 0, x ∈ D and 〈a1, f1(t, x)〉> 0, (t, x) ∈ R+× D.

The case of reverse inequalities, is considered similar. From the inequalities above, it follows
that (〈a1, x0〉 −α1)< 0. We have

(∃δ = const > 0) :
(∀x∗0 ∈ D, ‖ x∗0 − x0 ‖< δ) =⇒ (〈a1, x∗0〉 −α1)< 0.
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The function ψ∗1(t) = 〈a1, x1(t; t∗0, x∗0)〉 −α1 is introduced, where t ≥ t∗0 and x1(t; t∗0, x∗0)
is the solution of problem

d x

d t
= f1(t, x), x(t∗0) = x∗0.

For t = t∗0, it is true

ψ∗1(t
∗
0) = 〈a1, x1(t

∗
0; t∗0, x∗0)〉 −α1 = 〈a1, x∗0〉 −α1 < 0. (14)

On the other hand, using condition H6 for t > t∗0, we have

d

d t
ψ∗1(t) = 〈a1, f1(t, x(t; t∗0, x∗0))〉 ≥ C〈a1, f1〉 = const > 0. (15)

By (14) and (15) it follows that there exists a point t∗1 > t∗0 , such that

〈a1, x1(t
∗
1; t∗0, x∗0)〉 −α1 =ψ

∗
1(t
∗
1) = 0.

From the last equality, it follows that the solution of system (10), (11), (12), (13) cancels the
switching function ϕ1 at the point t∗1 .

According to the theorem of continuous dependence of solutions of systems differential
equations with fixed structure and without impulses on the initial condition (see Theorem
7.1, S 7, Chapter I, [10]- further for brevity, called the theorem of continuous dependence),
we obtain that

(∀ω= const > 0) (∃δ = δ(ω), 0< δ ≤ω) :
(∀t∗0 ∈ R

+, |t∗0− t0|< δ)(∀x∗0 ∈ D, ‖ x∗0 − x0 ‖< δ)

it follows

‖ x1(t; t∗0, x∗0)− x1(t; t0, x0) ‖
=‖ x∗(t; t∗0, x∗0, f ,ϕ.I∗)− x(t; t0, x0, f ,ϕ, I) ‖≤ω, tmax

0 < t ≤ tmin
1 .

(16)

Let t1 = tmin
1 =min{t∗1, t1} . Then in particular, from the inequality (16) for t = t1, it follows

ω≥ ‖ x1(t1; t∗0, x∗0)− x1(t1; t0, x0) ‖
= ‖ x1(t1; t∗0, x∗0)− x1(t1; t0, x0) ‖ . ‖ a1 ‖
≥|〈x1(t1; t∗0, x∗0)− x1(t1; t0, x0), a1〉|
=|〈x1(t1; t∗0, x∗0), a1〉 −α1|
=|〈x1(t1; t∗0, x∗0), a1〉 − 〈x1(t

∗
1; t∗0, x∗0), a1〉|

=|〈x1(t1; t∗0, x∗0)− x1(t
∗
1; t∗0, x∗0), a1〉|

=

�

�

�

�

�

*

∫ t∗1

t1

f1(τ, x1(τ; t∗0, x∗0))dτ, a1

+
�

�

�

�

�

=

�

�

�

�

�

∫ t∗1

t1

〈 f1(τ, x1(τ; t∗0, x∗0)), a1〉dτ

�

�

�

�

�
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=

∫ t∗1

t1

¬

f1(τ, x1(τ; t∗0, x∗0)), a1

¶

dτ

≥C〈a1, f1〉(t
∗
1− t1),

whence, we obtain the estimate

|t∗1− t1|= t∗1− t1 ≤
ω

C〈a1, f1〉
= C1ω.

Statement 4 of theorem is proved by using the following sequence of inequalities:

‖ x∗(t∗1; t∗0, x∗0, f ,ϕ, I∗)−x(t1; t0, x0, f ,ϕ, I) ‖
= ‖ x1(t

∗
1; t∗0, x∗0)− x1(t1; t0, x0) ‖

≤ ‖ x1(t
∗
1; t∗0, x∗0)− x1(t1; t∗0, x∗0) ‖+ ‖ x1(t1; t∗0, x∗0)− x1(t1; t0, x0) ‖

≤
















∫ t∗1

t1

f1(τ, x1(τ; t∗0, x∗0))dτ
















+ω

≤C f1(t
∗
1− t1) +ω

≤C f1 C1ω+ω

=C2ω.

Finally, the last statement of theorem follows from the inequalities:

‖ x∗(t∗1+0; t∗0, x∗0, f ,ϕ, I∗)− x(t1+ 0; t0, x0, f ,ϕ, I) ‖
= ‖ x1(t

∗
1; t∗0, x∗0) + I∗1(x1(t

∗
1; t∗0, x∗0))− x1(t1; t0, x0)− I1(x1(t1; t0, x0)) ‖

≤ ‖ x1(t
∗
1; t∗0, x∗0)− x1(t1; t0, x0) ‖+ ‖ I∗1(x1(t

∗
1; t∗0, x∗0))− I1(x1(t1; t0, x0)) ‖

≤C2ω+ ‖ I∗1(x1(t
∗
1; t∗0, x∗0))− I1(x1(t

∗
1; t∗0, x∗0)) ‖

+ ‖ I1(x1(t
∗
1; t∗0, x∗0))− I1(x1(t1; t0, x0)) ‖

≤C2ω+δ+ CLipI1
‖ x1(t

∗
1; t∗0, x∗0)− x1(t1; t0, x0) ‖

≤C2ω+ω+ CLipI1
C2ω

=C3ω.

The theorem is proved.

Theorem 5. Let the conditions H1–H10 be satisfied.
Then the dying solution x(t; t0, x0, f ,ϕ, I) of initial problem (1), (2), (3), (4) depends con-

tinuously on the initial condition and impulsive effects.

Proof. For the convenience, we structure the theorem proof into several parts:
Part 1. As:

• J(t0, x0, f ,ϕ, I) = (t0, t0), t0 = const (see Theorem 3);
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• T ∈ J(t0, x0, f ,ϕ, I)⇔ t0 ≤ T < t0;

• lim
i→∞

t i = t0,

it follows that the closed interval [t0, T] contains a finite number of switching moments. Let
the inequalities t0 < t1 < t2 < . . .< tk ≤ T < tk+1 be valid.

Part 2. Let ε and η be arbitrary positive constants. Let the constants η0,η1,η2, . . . satisfy
the inequalities:

0< η0 <
1
2
(t1− t0);

0< ηi <min
�1

2
(t i − t i−1),

1
2
(t i+1− t i),η/k

	

, i = 1, 2, . . . , k;
ηi = 0, i = k+ 1, k+ 2, . . . .

It is obvious that
∑∞

i=1ηi < η. In addition, if |t∗i − t i| ≤ ηi for i = 0, 1, . . . , then

tmin
0 ≤ tmax

0 < tmin
1 ≤ tmax

1 < tmin
2 ≤ tmax

2 < . . . .

Part 3. Applying Theorem 4, we have:

(∀δ1, 0< δ1 < ε) (∃δ0 = δ0(δ1,ε,η1, t0, x0) = const, 0< δ0 < δ1) :

(∀t∗0 ∈ R
+, |t∗0− t0|< δ0) (∀x∗0 ∈ D, ‖ x∗0 − x0 ‖< δ0)

(∀I∗1 ∈ C[D,Rn], ‖ I∗1(x)− I1(x) ‖< δ for x ∈ D)

it follows:

• The solution x∗(t; t∗0, x∗0, f ,ϕ, I∗) cancels switching function ϕ1 at point t∗1;

• ‖ x∗(t; t∗0, x∗0, f ,ϕ, I∗)− x(t; t0, x0, f ,ϕ, I) ‖≤ δ1 < ε, tmax
0 < t ≤ tmin

1 ;

• |t∗1− t1| ≤min{δ1,η1};

• ‖ x∗(t∗1+ 0; t∗0, x∗0, f ,ϕ, I∗)− x(t1+ 0; t0, x0, f ,ϕ, I) ‖≤ δ1.

Part 4. Applying Theorem 4 consistently for i = 1,2, . . . , k. We obtain:

(∀δi+1, 0< δi+1 < ε) (∃δi = δi(δi+1,ε,ηi+1, t0, x0) = const, 0< δi < δi+1) :

(∀t∗i ∈ R
+, |t∗i − t i|< δi) (‖ x∗(tmax

i + 0; t∗0, x∗0, f ,ϕ, I∗)− x(tmax
i + 0; t0, x0, f ,ϕ, I) ‖≤ δi)

(∀I∗i+1 ∈ C[D,Rn], ‖ I∗i+1(x)− Ii+1(x) ‖< δ f or x ∈ D)

it follows:

• The solution

x∗(t; t∗i , x∗(tmax
i + 0; t∗0, x∗0, f ,ϕ, I∗), f ,ϕ, I∗) = x∗(t; t∗0, x∗0, f ,ϕ, I∗)

cancels the switching function ϕi+1 at point t∗i+1;
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• ‖ x∗(t; t∗0, x∗0, f ,ϕ, I∗)− x(t; t0, x0, f ,ϕ, I) ‖≤ δi+1 < ε, tmax
i < t ≤ tmin

i+1;

• |t∗i+1− t i+1| ≤min{δi+1,ηi+1};

• ‖ x∗(t∗i+1+ 0; t∗0, x∗0, f ,ϕ, I∗)− x(t i+1+ 0; t0, x0, f ,ϕ, I) ‖≤ δi+1.

Part 5. The constants δ0,δ1, . . . ,δk+1 are defined in descending order. Firstly, we fix
δk+1, 0 < δk+1 < min{ε,ηk+1}. After that, we determine consistently (in that decreasing
order) the constants δk,δk−1, . . . ,δ0, (δk+1 > δk >, . . . ,> δ0). From the previous two parts,
we receive that

(∀t∗0 ∈ R
+, |t∗0− t0|< δ0) (∀x∗0 ∈ D, ‖ x∗0 − x0 ‖< δ0)

(∀I∗i ∈ C[D,Rn],‖ I∗i (x)− Ii(x) ‖< δi < δ0 for x ∈ D)

=⇒‖ x∗(t; t∗0, x∗0, f ,ϕ, I∗)− x(t; t0, x0, f ,ϕ, I) ‖< ε,

t ∈ [tmax
0 , tmin

1 ]
⋃

(tmax
1 , tmin

2 ]
⋃

. . .
⋃

(tmax
k , tmin

k+1].

Part 6. We have

[tmax
0 , tmin

1 ]
⋃

(tmax
1 , tmin

2 ]
⋃

. . .
⋃

(tmax
k , tmin

k+1]

⊃[tmax
0 , tmin

k+1]�((t
min
1 , tmax

1 )
⋃

(tmin
2 , tmax

2 )
⋃

. . .
⋃

(tmin
k , tmax

k ))

⊃[tmax
0 , T]�([t1−η1, t1+η1]

⋃

[t2−η2, t2+η2]
⋃

. . .
⋃

[tk −ηk, tk +ηk])

=[tmax
0 , T], |t − t i|> ηi , i = 1,2, . . . .

Part 7. From the previous two parts, we find

(∀t∗0 ∈ R
+, |t∗0− t0|< δ0) (∀x∗0 ∈ D, ‖ x∗0 − x0 ‖< δ0)

(∀I∗i ∈ C[D,Rn], ‖ I∗i (x)− Ii(x) ‖< δi < δ0 f or x ∈ D)

=⇒‖ x∗(t; t∗0, x∗0, f ,ϕ, I∗)− x(t; t0, x0, f ,ϕ, I) ‖< ε,

t ∈ [tmax
0 , T], |t − t i|> ηi , i = 1,2, . . . .

The theorem is proved.
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