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Abstract. The three-dimensional incompressible Navier-Stokes equations are solved in this work with
the application of the transformed coordinate which defines as a set of functionals,

h; (§) = k;x + 1;y + m;z — c;t. The solution is proposed from the base of higher order polynomial first
order differential equation, which is firstly reduced into the Riccati equation. The Riccati equation is
then implemented into the Navier-Stokes equations to produce the polynomial equation with variable
coefficients. The resultant solutions from the system of Riccati and polynomial are then evaluated by
the proposed method of integral evaluation. The existence property is analysed and uniqueness of
velocities is ensured. It is found that the pressure is not unique.
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1. Introduction

The problem of searching for the classes of analytical solutions of the full Navier-Stokes
equations is highly demanding from both theoretical and practical viewpoints, as has been
described in the literature [11]. The main difficulty of analytical solution of the Navier-
Stokes equations is the contribution of the nonlinear terms representing fluid inertia which
then troubled the conventional analysis in general cases. However, there are some works
have already been conducted in the literatures [15, 16, 12]. As in the most cases, analytical
solutions are examined only in special conditions in which the nonlinearity are weakened or
even removed from the analysis.

There are also sophisticated analysis of the Navier-Stokes equations which have been con-
ducted and the results givs more insight to the problems [2]. One of them is the transforma-
tion of the Navier-Stokes equations to the Schrodinger equation, performed by application of
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the Riccati equation [1]. It has good prospects since the Schrodinger equation is linear and
has well defined solutions. The reduction of the full set of Navier-Stokes equations to be a
class of nonlinear ordinary differential equation is also performed [7]. The solution applied to
both zero and constant pressure gradient cases. The method of introducing special solutions
for velocity has also been investigated in [14, 13].

In this work, we discuss the continuity and three-dimensional incompressible Navier-
Stokes equations with forcing functions

u,+v,+w, =0, (1a)
1

u; +uu, +vuy, +wu, = —pr +vuy, +vuy,, + vy, +F, (1b)
1

Ve tuv, +vv, +wy, = —;py+vvxx+vvyy+vaZ+F2, (1)
1

we tuw, +vw, +ww, = —;pz+vwxx+vay+vwzz+F3, (1d)

The following relation is produced from the continuity equation (1a),

u:—J (vy+wz)dx+K1 (y,2,t). (2)

Equation (2) can be substituted into (1d) to give

1
we+ [—J (Vy +wz) dx +K1} wy+vw, +ww, = —;pz+v (wxx +wy, +WZZ) +F5. (3)
X

Then the pressure relation can be determined as

p=pJ {F3—|—U(Wxx—l—wyy+wzz) +w, [J (vy—l—wz) dx—Kl] —wt—va—wwz}dz
+K2 (x:}’;t)'
4)

The next step is implementing equation (2) and (4) into (1c),

fo (Vy +Wz) dx —Kyvye =V, Ty twy, —v (vxx Ty +VZZ) Ky
x

+ aa—y |:£ {F3 +v (wxx +w,, —l—wzz) +wy [Jx (vy +WZ) dx —K1:| — W —Vvw, —wwz} dz:| .
(5)

Suppose that the coordinate also satisfy the following set of traveling wave ansatz
h; () =k;x + Ly + miz —c;t, (6)

where k;,l;,m; and c; are constants. The step is now transforming the cartesian coordinate
into £-coordinate by setting the subscript i = 1, 2, 3,4 such that we have four equations for the
coordinate transformation. The results of x = (§),y =Y, (&),z2=vY3(E) and t =Y, (&)
are then determined.
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2. Methodology

Applying one of the traveling wave ansatzs, i.e. hy (§) = kyx + 1y + myz — ¢yt into (5),
the considered equation then transformed into

KL (Kl + kmw) + LK I DAL
—V v mw —K{Vg=—7T—7"7"V —VV — WYV
hy © hie © o hye © 0 hyy o Ry ©
k? 2 m? [ [ k21 3 l;m?
1 1 1 1 1 1°1 1 17741
—v T+T+T V£§+_F3+F2+_K2§+U 5 + 5 + 3 ng
(hlg hlg hl§ mq hlg hlgml hlgml hlgml
L [(k i + 1 ) K } L ahb i h )
—Ww —V w | — Wg — VWr — —WWg.
hlg £ 1m1 1 ! hlgml 3 hlgml £ h]_g £

Rearranging (7) to give

l l
ayVer +axvve + (a3 + auw) ve +aswev = agweg +a;we +agwwe + m—1F3 +F,+ h—leg, (8)
1 1£
where a; are variables that depend on &.
The previous work shows that equation (8) is transformable into the system of Riccati and
polynomial equations with variable coefficients. In this work, we generalize the method to
the class of polynomial differential equations as in the following

ve=apv +apy"  +agy i ay P asy T + a1Vt ay +ag. (9)

The equation is also transformable into the Riccati equation as formulated in the following
statement.

Theorem 1. Given q is a function resulted from the factorization of equation (9). Set v = —u
then the explicit expression for a,., can be determined as a function of higher order polynomial
coefficients such that equation (9) is transformable into the Riccati equation as

Ve = qu +a,v+a,4q.
Proof. (By induction) Consider the following equation
Ve = a;v’ + a2v6 +azv’ + a4v4 + a5v3 + a6vZ + ayv + ag. (10)
The above equation can be rewritten as

ve =[v+u] [a1v6 + (ay —au) v> + (ag —au+ aluz) v+ Kyv? +K4v2] an
+ (a6 — asu+ aqu® — azu® — ayut + alus) v +a,v+ag =0,

where K5 = a4 — a5 + ayu® + a;u® and Ky = ag — auu + agu® — ayu® + a,u®. Set v = —u and
ag — asu + a,u? — azu® — a,u* + a;u® = q to give the system of

2

ag — asl + asu” — a3u3 - a2u4 + a1u5 = gand Ug = —qu2 + ayu — ag.
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Lemma 1. The first equation of (12) is reducible to the fourth order equation.

Proof. The first equation of (12) can be rewritten as

Set u =z + A to give

q—4ae
a

=0.

a a a a
+AP — 2G+A + 2 +AP - 2 +AP+ = (z+A) +
a; a a a
The above expression can be expanded as follows

(2° + 542 + 104%2° + 104%2 + 5A4%2 + A% — =2 (2% +442° + 64%22 + 44 + A*)

a
—de
a;

a ay
+a—3(z3+3Az2+3A2z+A3) ; = (& +2Az+A2)+ (z—i—A)—|— —0,
1 1

a a
2%+ (SA ) + (10,42 4A + 3) 23+ (1OA3 6222 1348 —4) 22
a; a, aq aq

(5A4—4A32+3A2—3—2A += )
a; a;

a a
+ (AS _ B2y Bz B - ) —0.
a1 Cl]_ a

By using the equation (z+ b)(z+c¢)(z+d)(z+e)(z+f) =0as

22+ (b+c+d+e+f)z*+ (bf +cf +df +ef +be+ce+de+db+dc+ bc)z>
+ (bef +cef +def +dbf +dcf + bcf +dbe +dce + bee) 2>
+ (dbef +dcef + bcef + bede) z+ bedef =0
with
as
b+c+d+e+f=5A-—,
a;
bf+cf+df+ef+be—|—ce+de+db+dc+bc=1OA2—4A%+%,
1 1
a

bef +cef +def +dbf +dcf +bcf +dbe +dce+ bce = 10A% — 6A%2—= +3A— -—

a; a

a
dbef +dcef + beef + bede = 5A* — 44322 434283 _ 924 | I8
a; a a @

a a a a —da
bedef =A% — 2ty B3 _Tp0 55, 176
a; a a; a a

20

(12)

(13)

(14)

(15)

(16)

aq
a;’
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Evaluating the coefficients in (15) and (16),

bf +cf +df +ef +be+ce+de+db+dc+bc=

2_40%2 3,2 _ —1042—aa2 B
10A* —4A— + 5A f|f+be+ce+de+db+dc+ bc=10A*—-4A— +

a a a a
or
a2 2 a2 a, das
S5A— — |f—f“+be+ce+de+db+dc+ bc=10A" —4A— + —, a7
a; a aq
a
bef +cef +def +dbf +dcf + bcf +dbe + dce + bece = 10A° — 6A2 2+3 B _ G
a; a; a;
2 as 2 as a3
fe—=|5A—— | f+10A* —4A—+ — | f +dbe+dce+ bce
a a a
a
—10A% 622 432 B _ 1
a a a
or
3 a2\ .2 2
f°P—[5A——]f“+|10A —4A + f +dbe+dce+ bce
a a a
a a a a a
—10A% — 622 4343 Tp3 (SA— —2) 24 (1OA2 —4A2 4 —3)f (18)
a; a @O a @
3 2 as ay
+dbe+dce + bce = 10A° — 6A*— +3———,
as a a
a a a a
dbef +dcef + beef + bede = 5A* — 4432 43422 —24—2 4 =2,
a as a a
a a a a
(—f3+(5A——2)f2—(1OA2—4A +=2 )f+1OA3—6A2—2+3 —3——4)f
as a as a aa
a a
+bede=5a% 4832 132 B 000 B
a a a a
or

a a
—fh 4 (SA— —2) f3- (1OA2 a2 B )fz (10A3 622 1 348 _ —4) f
a; a; a a a q (19)
tbede=5A% — a3 2 32 B _op 2t IS

a a; a
a a a a —da
bedef = A5 — 24t 4+ B3 Y2 B, 17 %6
a a; a a; a
a a a a a
(f“ - (SA— —2) FPHKef2—Kef +5A4% —aA® 2 43422 242 4 —5) f
a; a; a; a a

a a a a —a
a5 Bpr B T B, T
a a as a as
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where Kg = 10A2 — 4AZ—2 + Z—g and K = 10A° — 6A22—2 + 3AZ—3 — % The above equation can be
1 1 1 1 1
rewritten as

a a a a a a
f5— (SA— —2) At (10,42 —4A2 4+ —3) f3- (10A3 —6A2-2 1342 —4) £2
a

a a a a
a a a a a a a a
+ (5A4 —an 2 4 3p2 2 _opt 4 —5) F=A 2404 3283 - 224 24 (20)
a as a a a; a a as
—a
417 %
as

Grouping equation (20) as in the following

a a a
[f5 —5Af* +10A%f3 — 10A3f2 + 5A%f —A5] +2f4y (—3 - 4A—2) f3
a;

a; a
a a a a a a a
+ (6A2—2—3A—3+—4) 2+ (3A2—3—2A—4+—5—4A3—2)f 1)
a; a; a a, a aq a;

Set f> —5Af*+ 10422 — 10A3f2 + 5A*f — A5 =0, and f = g"A to obtain
(&7 —5¢" +10g°" —10g°" +5g" — 1) A’ =0
or g°"—5g*4+10g%" —10g?"+5g"~1=0, (22)

where n is an arbitrary constant. Note that equation (22) is a polynomial equation with
constant coefficients which the solutions are definable by the existing computer programs.
Also, the coefficient a; can be recovered by the definition of q as will be explained later. Thus,
equation (21) is reduced into,

f4+(E—4A)f3+(6A2—3Aﬁ+%)f2+(BAzg—ZA%+E—4A3)f

as a; a a a a (23)
+ (A4—EA3+%A2—EA+ a6_q) =0.
as as as as

This proves lemma 1.

Substituting for f = g"A, then the fourth order polynomial equation is produced which
then solvable by radical solution. Therefore, take the root of A = a (&), meanwhile, v = —u,
v=2+4+A,z=—f and f = g"A, the solution for u will become

v=—u=—3-A=f-A=(g"-1)A=(¢g"-1)a. 24

Lemma 2. Consider the second equation of (12). There exists a function 3 such that ag = ffu,
which generate the Bernoulli equation. The equation then has closed-form exact solutions when
B is solvable.
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Proof. Setting ag = fu, the original problem is transformed into
ug = —qu* + (a; — B) u.
The solution of (25) is expressed as
a oJe(ar=p)de
u= — =
B [ qelderPiegy

D= qeff(a7_ﬁ)d€d§ = efE q%dg.
3

Set B = % and differentiate (27) once to give

Aefi(ar/'%)d‘g = agBefi e =g.
Thus, A and B are given by

ge Jz® g

A and B =

The function a can be determined as

A age [ g
f===-— £ A
B L s

a;d&

Without loss of generality suppose that, ge_f £ = A to produce

~ age_fi a7dé fg qefi vl

Je5ag

A
B

The solution for  is then

e e
3 3

g kiae T g

23

(25)

(26)

27)

(28)

(29)

(30)

(3D

(32)

The above equation is combined with (26) to form the solution of the general Riccati equation.

This proves lemma 2.
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The next step is combining lemma 1 and lemma 2 by equating equations (24) and (26),

(1, (a7 [ el ) a

v=(g"-1)a=0C,
fgqefgaﬂigdg

(33)

Since the function a = a (q), it is difficult to determine q from (33). Thus, take g as an
arbitrary function, the solution for ag is then

f§a7d§ 2
ag = Cs ﬁ a ( qef§a7d€d§) (34)
azy
fgqe €77 dE 3 ¢

which then reduce equation (11) into the Riccati equation with variable coefficients. Ac-
cording to the previous consideration of a;, the function, ¢ = q (a;) can be implemented to
recover a;.

Note that the procedure of (12- 23) can be repeated and iterated by induction to reduce
the higher order polynomial equation until the fourth order equation is achieved. Expanding
the result to any order as in (9) and combined with (26) to represent the Riccati equation,
Ve = qv? +a,v + a,,. The expression for a,,, is thus defined as

[, a.dé 2

e’

a1 =C3 | ————— a ( qef€a”d€d§)
g

[ andé
fg qe’s dé .

where ¢ = q (a;,ay,as,++- ) following the reduction process and we are done.

3. Analytical Solutions to the 3D Incompressible Navier-Stokes Equations

The results from theorem 1 can be implemented into the Navier-Stokes equations with the
application of Riccati equation as a representation of higher order polynomial equations.

Lemma 3. Equation (8) is transformable into the system of Riccati and third order polynomial
equations.

Proof. Consider the Riccati equation
Vg = blvz + sz + bg (35)
such that the following relation is satisfied
Veg = blgv2 +2byvve + byev + byve + b,

ver = 2b2v° + (byg +3b1 by ) v2 + (bog +2b1 b + b3 ) v+ bye + bybs. (36)
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The equivalent coefficients are, b; = q,b, = a,, and by = a,, ;. Substituting into (8) to get
the following polynomial equation

(2611 b% + azbl) V3 + (al bzg + 2a1b1b3 + a, b% + a2b3 + a3b2 + Cl5W§ + a4b2W) %

+ (a1b15+3a1b1b2+a2b2+a3b1 +a4b1W) V2 (37)
l
= agWgg + aywg + agwwg — agbsw — a;bgs — a;bybs — agbs + m_1F3 +Fy,+ h—leg.
1 1£

Therefore, equation (8) is transformed to the system of (35) and (37). This proves lemma 3.
Set (2611 b% + azbl) = 0 and (al b1§ + 3a1 b1 b2 + azbz + das bl + a4b1W) = 0, thus the
expression for b; and b, are defined by
as

by =——2 38
1 2a15 ( )

B (al bir +asb; + a4blw)

by, =— . 39
2 3Cllb]_ +Cl2 ( )

Therefore, equation (37) is reduced into

I l
agWee + a;we +agwwe — agbsw — a;bge — aybybs —asbs + m—lng +Fy+ ﬁKzg

v = - . (40)
albzg+2a1b1b3+a1b2+a2b3+a3b2+(15W§+a4b2W

The expression for b; will be determined later as a requirement of unique solutions under
general initial-boundary values. Also note that the solution for the system (35) and (40) will
be similar to that of the velocity in 2 direction as derived in the subsequent paragraph.

3.1. The Formulation for w Velocity

The step now is performing equations (2) and (4) into (1b),
5}
a7 ) (vy+wz) dx—K; |+ | — ) (vy+wz) dx + K, (vy+wz)

0 0

—I-VE ) (vy+wz) dx —K; +W£ ) (vy—l—wz) dx —K;

0
=3 F3+U(wxx+wyy—|—wzz)—|—wx (vy+wz)dx—K1 —wy—vw, —ww, rdz

02 02

+ Ky + U ((vxy-i-wxz) +a—y2 Ux (vy +ws) dx—K1:| +o3 Ux (vy +w,) dx—KlD +F.

(41)
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Performing the coordinate transformation (6),

[
-~ (kalyve +kymywe = Ky) + [= (kalyv + kymyw) + K4 (hl ve + h—Wg)
18 1& 1

L my
+Vh_ (klllv;; + k1m1W§ _Kl) +Wh_ (k111V§ +k1m1W§ _Kl)
1& 133

= ﬁKzg +v (klzll Vg}.; + kl;nl ng) + ’Ug (k111v§€ + k1m1W£g _Kl)
hig h1.5 h15 hlg

+ m L (kylyvee +k K) +— k| ke fah f
h%g 1 1V§€ 1m1W§€ 1 hlgml Wg hlgml VWg hlgWWg

k & k12 kim k kzl
+—1 F3+U 21 + 211 + 121 W§€+—1W§|:( ! +k2 _Kl +F1
mq hléml hlgml h1€ hlg my

(42)

Thus by grouping the above equation, the momentum in z direction is given by

k kl C1 12 m%
a9W5g+a10WW5+a11W£+ F3+F1+ —Kye — —+U—+U K;
hq 1£ 43)

= aypVee +ajzvve + (a14 +asw) ve + agewev.
Since equation (43) is similar to that of (37), it is reasonable to state that the solution for v

is also similar to (40). Repeating the procedure described by (35-40) with different variables,
b,, bs and by yielding

k k
Clgng + alOWW§ + Cllle —dis b6W — a12b65 — a12b5b6 - Cll4b6 + m—lng + F1 + iKzg — K7

V= ,
a12b5€ + 2a12b4b6 + alzbg + a3 b6 + a14b5 + a16W€ + a15b5W
(44)

2
where K, = ( + v + Choy ) K;. Equating (40) and (44) to get

I l
AgWee + azwe + agwwe — agbsw — a;bge — aybybs — asbs + m—lng +F,+ iKZi

V=
a, bzg + 2a1 bl b3 + a, b% + a2b3 + a3b2 + a5W€ + a4b2W

k k
a9W€5 + Cll()WWg + a11W5 —dajis b6W - a12b6§ — a12b5b6 - a14b6 + m_lng + Fl + éKzg - K7

a12b55 + 2a12b4b6 + alzbg + aq3 b6 + a14b5 + a16W£ + a15b5W
(45)

which then can be performed algebraically to form a single expression.
In this research, we are interested to the class of solutions that is physically important
(3, 4],
w=r(g)eM®), (46)
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Substituting (46) into (45) to get

re (a17r£5 + 81T + Ayl + Aol + a21) +r (azzrgg + ax3r'Tg + Ag4le + AosT + a26)

47)
+ a27r55 + a28rr5 + azgrg + asogl + as) = 0.
By setting,
re = byr? + bgr + by (48)
such that the following relation is fulfilled
reg = 2b2r% + (byz +3b,bg) 12 + (bgz +2bybg + b3 ) 7 + bz + bgbg. (49)

Note that equation (48) is also an equivalent form of higher order equation as stated in
theorem 1. Thus, applying (48) and (49) into (47), the resulting polynomial equation is
defined by

dsy 7"5 + a33r4 + (134T3 + dsg T'z + dsel” + a7 = 0, (50)
where as; is given by
aszy = djy (bggbg + bgbg) + algbg + agq bg + agy (b9§ + bsbg) + a29b9 + as. (51)

Lemma 1 can be implemented to reduce equation (50) to the fourth order polynomial which
the root is solvable by radicals, say be written as r = ¢ (§). Meanwhile, b, will be defined
later by the similar condition as applied to bs.

3.2. The Solution for the Riccati Equation

In order to solve the system of (48) and (50), the following step is necessary [5],

Lemma 4. Consider equation (48) and set bg = f; — J% to generate
2

2, =242 b
£ %, + f1Z + fabo,

where Z = f,or. Set a relationf,bg = ¢ Z, and according to the result of lemma 2, the function ¢
is expressed as,

1

o[ et i
P £ 3 f2

Proof. Set bg = f; — % to rearrange equation (48) as
2

3

1
ri"'&’":_(fzr)£:b7rz+f1’"+b9- 52
fo fa
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Suppose that Z = f,r, then the following equation is produced

Z —b7zz+ Z+f,b 53
g——z frZ + foby. (53)

Set fobg = ¢ Z, the original problem is transformed into

b
Ze=L7%+ (A +¢)Z. (54)
fa
The solution of (8c¢) is expressed as
Fobo Je(iro)dE
Z= P S Fr (55)
by 1
Jege d¢
Applying the result of lemma 2 and define the function, f, ge_f N9 — Ag to produce
A fzbge_fgfldg fg %@ef‘gfldgdg
BT " ) (56)
fg 5®dE
where ® will be defined later. The solution for ¢ is then
1
A C _ b 2
p=2=4 Fodboe N | ZgelchdEqe | ge| L (57)
B P £ £ fo

3

The above equation is combined with (55) to form the solution of the general Riccati equation.
This proves lemma 4.

3.3. The Complete Solution

The system which is represented by (48) and (50) will have a simultaneous solution as
it is driven by equation (52- 57) and equation (50). The claim is concluded in the following
theorem:

Theorem 2. Consider the solution of the Riccati equation as described by (55) and (57). By
combining with the root of (50), r = €(&), then the expressions of f, and ® can be determined.
The resulting expressions thus complete the solution of the system defined by (48) and (50).

Proof. Equating the results from (50) and lemma 4 as follows

E=eor bg=¢¢ 26& f f2¢>bge_f€fldgf E<I>ef€f1d£d€ dg . (58)
a ® £ £ fo

N =
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Integrate the above equation and perform the algebraic calculations to give

. fdE
J b7 elehidzqr = g & J q)bgdi = L Jendt (59)
g f2 3 : f

f2bo® 2

with ¢ = C5 [( f ‘“’gdg ) } . Differentiate (59) once to get the relations of f; and f, as in

3
the followmg

1 ®b; ¢
= -y ) (60)
(fz) fz ( ' !
The solution for f, is then
&b
fo = pelehite e e (61)
Equating the above equation with bg = f; — % to get the following expression
2
®b )
b8=f1+(—7——‘5—f1) (62)
1 ¥
which has also solved ¢ as in the following,
C &by .\
p=—2 e | | =eJed | gp et g, 63)
‘bbg £ € £
£

It is important to mention that the solution for f; does not exist. This condition is consis-
tent with equation (61), since f; will vanish when (61) is substituted into (57). The above
equation can be rearranged as

2C ®b
225 Je bade U 9d§) J dbyele % qe. 64)
€ €
3 3
Equation (64) forms the linear first order equation in ®, the solution is then expressed as
2C 2bsC 2C 2bgC
o | () e (32) +2
d=—|——— | exp —— | d&
o () (5:-22)
by ¢ ¢ I (65)
_ i 2b88C5 _ 285(75 IE(Zbgss;: ZZ:CESCS)dg'
b9 62 b7 — 2C5
Therefore, the explicit solution of the system (48) and (50) is given by
by oJe(fio)ae oJe (P )az
r=—=- =— (66)

¢ fzfg%efg(hw)dédg ol o (FFo)as g
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where the function ¢ is determined by

o] | Je I3 fZ

£
_ 1
(‘ 2
_G w@bge_fé?dgj &q’ek%dgdﬁ d¢ (67)
| e £ ¥
£
1
C 2
= (f@bgdg)
e |\ J:

This completes the proof of theorem 1.

Note that the procedure that explained by equation (52-57) and equation (58-67) can also
be applied to system (35) and (40). Therefore, by substituting (66) into (46) the solution of
mass and momentum equations, w,v,p and u are defined by (46), (40) or (44), (4) and
(2). Therefore, based on the obtained solutions, the result then can be generalised as in the
following

w = W1+ W2+
V= V1+ V2+ (68)
u= u;+ ux+

p= pit pot

which can also be solved by the same procedure.

4. Remarks on Integral Evaluation of Analytical Solutions

It is important to note that the integrals which appear in the analytical solutions are usu-
ally approximated in series forms [17], by which the solution is then no longer exact. In order
to resolve the problem, now the following integral is considered [10],

A:f Aelef g (69)
&

By setting

A= | aedefEqs — R+ Q)nele s, (70)
<
where Cj is a constant, equation (70) can be differentiated once to give

2T = (Ry +Qe) nede# 4 4 R+ Q) meede ¥4 + (R+ Q) ngele ¥,
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Rearranging the above equation as

A _
(e e ()
n n n
The solution of p is then expressed by
1 _ A _
R=—e¢ fggdg nefggdg |:_ef§f gdi_{Qg_i_ (E_’.g—) Q}i| dg (72)
n £ n n
Let A
_ n
Eefgf s {Qg + (f +g) Q} =fs. (73)

Then, R is evaluated in the following

R= ¢ Jae { U fsndi) elesdé _ J U fsndé) gefég‘“d&} . 74)
n 3 £ \Je

Suppose that from equation (73),

A Jes—sdE _ o
n

J

. . e . .
where C, is also a constant. The expression for ef £24% i5 written as

iefifd"rzefigdg. (75)
CeM

Thus, equation (74) will become

R= Le‘fggdg{U f3nd§) &efgf‘“v'—f U fgndé) (&eféfdg) dg}. (76)
C677 3 n £ 3 n 13

Without loss of generality, set fg fand& =1In (%ef ef dg), and the expression of f5 is obtained

as ) N
f3=—{ln (—efifdg)} ) (77)
n n i3

The solution for Q is consequently obtained from (73) as in the following relation
1 _
Q=7e s f (Co = fo) meles*%de.
3

Substituting (75) to get

Q= ks f (Co— f3) Al . (78)
Ce"? I3
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Equations (70), (76) and (78) will give the evaluation as

1A 1
reli g = @+ Qmelss® = — Ll 4 —f (Co—f) Al Cag,  (79)
£ C67) C6 £

where f5 is determined by (77).
Equation (79) can be differentiated once and rearranged to be

relefdEqr = 1(&efsfdf) de. (80)
£ §f3 n £

Now suppose that %efifd5 =L and f5 = %{ln (%efifdg)} = L", with n is an arbitrary
3

constant. The relation of 7) is then given by

A
Anenfgfdgnl—n:_%_’_ (75 +f) (81)

1
Let n = (y + x) », equation (81) will then produce

A
e =(n—1)ane" NS4 2 4 (1 p) { (7‘5 +f) — 2A"e"fgfd€y} X
N (82)
+(1-n) (TEH) v (=D

The solution for y is similar to that of formulation described by the method in lemma 4,

A=) (% +£)y+(n-ane Iy,
v = (83)

{ [C7 f.g ({(1 —n) (% +f) y+(n— 1))Lnenf€fd£)/2 - Yﬁ}K9) dﬁ} ;}E,

_ _o [ anetJefdE nn e fd&
where Ko = A(n=1)e(n Dfifdge 2Janee  rae fg AefifdgezfiA e ngdi. Without loss of

rigor, set vy = —% (% +f ) k‘"e_nf F98 4o produce a more simplified solution

1

Cs{fg ((n—l)% (%+f)2x+ (% (%+f) A_ne—nfgfdi)glnenfgfdig) dg}z.

anetlef ey
(84)
The step is now performing the integration of (80) to give
1 i) 1-n
relefdiqr = — pron_ = (2 JsaE) (85)
1-n 1-n\n

3
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1
Substitute the relation n = (y + x) ™" into (85) and rearranging the result to produce

: Ag [.fde E . [ fat
! |k dg} ——5(—+f) J?Lei dE = —2 el
9{L 10 2 A £ 1—n

2
with K;p = (n — 1)% (% +f) E+ (% (% +f) A‘”e_"fifdg) l”enfifdgg. Rearrange and
3

differentiate the above equation once to get

oo | gnelr +1€(A§+f)
’ fgxefgfdgdi 2

2 A

(86)
J.fdg
A
(ges )5 gA2e2 4 +(1 (7% f)) ,
3

- .
fglefgfdgdg (fgkefifdgdg)z

2

where D is expressed by D = (n — 1)% (A—f —I—f) §+(% (% —|—f) A‘”e_“fifdg) A”e"fgfdgg,
3

It is not hard to see that equation (86) will produce a polynomial equation as in the following

3
( Aefgf‘“d&) D =Cy, (mp( )Leféfdgdi))
£ £
2
X ( g)tefifdgdi) (élefifd€)£+ (—glzezfﬁfdg) +( gkefﬁfdgdé) GE (% +f))

(87)

3

with E = §7Lef€fd€and F = %5 (A—f +f). Thus, the integral of fg }Lefﬁfdgdg can be defined
by the root of equation (87). By taking one root of (87) as

5 (5+5)),] (88)
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Meanwhile, G and H are defined by

¢ Cho n (£265) (3 (5+0))+ (e (5 +0) (%) |
6 o (e (o) e G )]
Co (aefefdé)( £a%e ngfdé)
T2 [k (e (e ]
2 [(a) 2 a( +f)) ( (o) (o) ]

7 - (e (3]

(89

and

with Ky = [(gxefefdg) (gxefsfdg)g +(Le(%+1)) (—gxzezfsfdgﬂ. This will solve

the integral in (69). Therefore, the following theorem is just proved.

Theorem 3. Consider the following integral equation
A= J Mg)efgf(g)dgdg‘
3

There exists a functional n =y + y, with yand y are given by

7L

Cg{fg ((n_l)% (%—Ff)zx-l- (% (%+f)A—ne—nfgfdi)gknenfgfdig) dg};

anenlefde
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such that the integral A can be evaluated as

@ (glefgfdé) (%5 (% ‘+‘f))€+ (%g (% _+_f)) (S}Lefsfdg)g
ORIy

+ [G+(H3+G2)3F+ [G— (H3+G2);} ,

f aelef ¥ qe =
3

where Cg, C1q and n are arbitrary constants and G and H are defined by (89) and (90).

5. Remarks on the Properties of the Solutions

Now we are at step to answer and proof the questions of existence and uniqueness of
smooth solutions with the result from integral evaluation. Since some functions of the solution
are arbitrary, they can become powerful objects to justify the properties under general initial-
boundary conditions [6].

5.1. Uniqueness Property

Consider that the velocity vectors and pressure have already been described by two solu-
tions with identical boundary conditions i.e. (uy,u,), (vy,vs), (w1, w,) and (p1,ps). Substi-
tuting the solution pairs into the continuity and Navier-Stokes equations (1la-1d) and set the
following relations

P= p1— p2
U= uy— 25)) (91)
V= Vi— Vo
W = wWi— Wso.

Suppose that the solutions are also supplemented by cauchy conditions as follows

up (x3,0) =uy (x;,0) =ug (x;)
vy (x:,0) = v, (x;,0) =0 (92)
w1 (Xi,O) =Wy (Xi,O) =0.

Hence, the following theorem is justified.

Theorem 4. Implements equation (92) into (91) in order to satisfy the following initial condi-
tions

U (x;,0) =uy (x;,0) —uy (x;,0) =0
V (x;,0) = vy (x;,0) — vy (x;,0) =0
W (x;,0) =wy (x;,0) —w, (x;,0) =0
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The condition % + f = 0 then can be applied such that the expression % = (C1,% and
— _Ig b2+%3 g 1 L hL fg b2+a3
by = —e ( 1) fg o m—llg +1, — EKzg ( ) d& are produced. The con-

tinuity and incompressible Navier-Stokes equations will have at most one solution for velocities
and more than one for pressure.

Proof. The following equations are produced by substraction and by utilisation of (91),

ou dv ow

— =0 3
3x+3y 8z ©3)
8U+U8U VaU aU_ 18P+ 82U+ 82U+ o%U ; o8)
U Vet T o P e Ve TV T I
ov._ ,ov. .ov. ov._ 19P azv+ 32V+ 2%V ; ©5)
9t T Cax  ay "z pay  Vaxz 'Vayr TV %
8W+U8W+V8W+W8W_ 18P+ 82W+ azw+ 22w ; 96)
ot U ox ' ay oz poz  axz Vayr Ve ¥
where I, 1, and 13 are defined by
du ouy du
= (u, + 2u2) 2 + (v, + 2v2) —Z 4 (wy + 2w2) 2 Uy vy Fwy—,
dy dx dy 0z
97)

av av av
12—(u1+2u2) +(v1+2v2) y+(w1+2w2) +u281+v281+wzal (98)

ow, ow ow
(u1+2u2)—+(v1+2v2)—y+(w1+2w2) 2 u, 5 TGy Ltw, azl.
(99)

Note that the external forces F;, F, and F5 are vanish by the substraction procedure. Applying
the same method as derived before, the solution of (93-96) are can be rewritten as

1
2

be 1
wW=2 p em® = ¢, elhl(g)(p (J (pq)bgdg) , (100)
£

. a9W§5 + a10WW§ + aqu —dqs b6W - alzbég - a12b5 b6 - a14b6
aqy bsg + 2(112 b4b6 + aqo bg + aq3 b6 + a14b5 + a16W€ + dqs b5W

k k m?
_m—1113—11+¢K2£—( +U +U )Kl

aqy b5§ + 2(112 b4b6 + aqg bg + aq3 b6 + a14b5 + a16W5 + dqs b5W
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or

l l
a6W€5 + Cl7WE + QBWW€ - a4b3W — bgg —a; b2b3 — a3b3 — m_1113 - Iz + iKzg
V =

5

(101)
p= J{v (Wx + Wy, + W, ) + W, U (vy+wz)dx—c1] —Wt—VWy—WWZ—Ig}dz

+ K>,

albzg + 2(11 b1 b3 + albg + a2b3 + a3b2 + a5W§ + a4b2W

(102)
U= _f (v, +W,) dx +K;. (103)

In order to ensure uniqueness, it is necessary to set, for example, W = w; —w, = 0 with initial
value W (x;,0) = w; (x;,0) —w, (x;,0) = 0 such that w; = w, with wy (x;,0) = w, (x;,0)
are fulfilled [8]. Thus, the denumerator of (100) can be considered as,

= %f %’%dg = oo which from the integral evaluation (88), (89) and (90), it is not hard
to verify that the following expression must be fulfilled

2

(=17 (% +f) e+ G (% +f) ”"e_"fgfdi) et el teg
3

ey 1 (e L

- 55 7+f 55 7+f .g_ ,

(b9/€)g 3

e +5 = 0 such that the following

(104)

where A = % and f = %. It is save to suppose that,
relation is fulfilled

% = (19, (105)
where C;, is a constant. Note that equation (105) satisfies both initial condition and unique-

ness since the criteria are the same, i.e. W =0 and W (x;,0) = 0. Substituting W = 0 into
equation (101) with V. =0and V (x;,0) = v; (x;,0) — v, (x;,0) =0, yielding

l l
a6W€€ + (17W€ + aSWW€ - a4b3W —a; bgi —a; b2b3 - a3b3 - m_1113 - 12 + iKZ‘g

albzg + 2(11 b1 b3 + albg + a2b3 + a3b2 + a5W§ + a4b2W

(106)
Dropping the term involving W, the first order differential is produced as in the following
as 1 11 ll
b3€+ b2+_ b3 = - —13+12— _KZE . (107)
a; a; \ mp h1§
In this case, b, is defined by b, = —(a;blgw, where b; = —=2. The solution of (107) is
a;bi+a, 2a,;
then
- 3 1 (1 l 43
by = —e Je(borit)ae | L L1, — Ky e )a de. (108)
¢ LT\ h1g
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Consider a special case of equation (103), which will generate K; (iy,2,0) =0 due to

U (x;,0) = 0. The result of U = 0 will then be produced since V and W are zero. Following
(91), we have that u; = u,,v; = v, and w; = wowhich show the uniqueness of velocities as in
[9]. Meanwhile, since the relation, K, (x,y,t) # fz I;dz of (102) is always hold, the result
is consequently, P # 0, or p; # p, which imply the non uniqueness of pressure. This proves
theorem 3.

5.2. Existence and Regularity Properties

Apart from uniqueness, the existence and regularity properties depend on the chosen func-
tion of the coordinate transformation, h, (&), and the variable coefficients of Riccati equations,
b; . Suppose that we take a velocity in z direction after the evaluation of initial-boundary con-

ditions as
by 1 ’
w= 2 pihi(®) — =, elhl(i) J(pq,bgdg . (109)
¢ Y \Je

Then, the following statement is produced.

Theorem 5. Let K; (y,z2,t),K, (x,y,t) and external forces are smooth functions, the following
relations

_ 2bgeCr—2ex C:
£, = pelehiy fo2ag e L (stscs ZSgCS) [ (B )ae

9 82b7—2C5

are satisfied such that there exist global solutions for u,v,w and p if by, bg, bg and h; (&) are
bounded.

Proof. The solution becomes bounded if ¢ = 255 f ‘I’b‘)dg # 0, which resulted to the
following requirement

3 (e ? 1 Ag —n-nf fdE ) ynonf fdE

(n—1)2(7+f) §+(§(7+f)l e 3 gle 3 E
1 (e 1 (e

et )\t )) e

where A = % and f = %. Therefore, by considering (65) and (110) it is clear that if b, bg, bg
and h; (&) are bounded, the solution will then also bounded. Applying the result into (40) or
(49), (4) and (2), the bounded solution for velocities in x and y directions including pressure
are also produced. Also note that the solutions of u,v,w and p are twice differentiable if the
external forces and arbitrary functions, K; (y,2,t) and K, (x, y, t) are smooth enough. Thus,
theorem 5 is proved.

(110)
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6. Conclusions

The method for producing the analytical solutions of the three-dimensional incompressible
Navier-Stokes equations is introduced in this paper. The solution is constructed under the
implementation of the higher polynomial differential equation such as in the following

ve=apv" + " a2 agy S a4 +a,_ v+ av+a,; (111)

which then reduce to the Riccati equation. The solution that is generated from the system
of Riccati and polynomial equations is then expanded by the utilisation of proposed inte-
gral evaluation.The existence is proved and the uniqueness property is ensured for velocities,
meanwhile the pressure is not unique.
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