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1. Introduction

In 1965, L. Zadeh first introduced the theory of fuzzy sets in his pioneer paper [14]. After

the birth of fuzzy set theory it has achieved manifold applications than the ordinary set theory.

From the beginning of fuzzy set theory it was clear that this theory was an extraordinary tool

for representing human knowledge. However, L. Zadeh himself established that sometimes, in

decision-making processes, knowledge is better represented by means of some generalizations

of fuzzy sets. The so-called extensions of fuzzy set theory arise in this way. Interval-valued

fuzzy sets were introduced independently by Zadeh [15], Grattan-Guiness [5], Jahn [7],

Sambuc [12] in the same year 1975 as a generalization of ordinary fuzzy set. In the field of

applications, the success of the use of fuzzy set theory depends on the choice of the mem-

bership function that we take. However, there are applications in which experts do not have

precise knowledge of the function that should be taken. In these cases, it is appropriate to

represent the membership degree of each element to the fuzzy set by means of an interval.

From these considerations arises the extension of fuzzy sets called theory of Interval-valued

Fuzzy Sets (IVFSs) that is, fuzzy sets such that the membership degree of each element of the

fuzzy set is given by a closed subinterval of the interval [0,1]. Thus an interval-valued fuzzy
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set (IVFS) is defined by an interval-valued membership function. It is important to note that

not only vagueness (lack of sharp class boundaries), but also a feature of uncertainty (lack of

information) can be addressed intuitively by interval valued fuzzy set. After the introduction

of the concept of interval-valued fuzzy set some authors [2, 6, 8, 10, 13] investigated the top-

ics related to interval-valued fuzzy set and obtained many meaningful conclusions. There are

natural ways to fuzzify various algebraic structures and it has been done successfully by many

mathematicians. A. Rosenfeld [11] is the father of fuzzy abstract algebra. He first studied the

notion of fuzzy subgroup in 1971. After that in 1979, N. Kuroki [9] introduced the concept of

fuzzy semigroup. In 1993, J. Ahsan, K. Saifullah and M. Farid Khan [1] introduced the notion

of fuzzy semirings. In 1994, T.K. Dutta and B.K. Biswas [3] characterized fuzzy prime ideals of

a semiring. Recently, many results of semiring theory are investigated by many researchers in

fuzzy context. In this paper, we initiate the study of fuzzification of some concepts of semiring

by using the concept of interval valued fuzzy set. Our main purpose of this paper is to study

prime ideals and completely prime ideals in semirings with the help of interval valued fuzzy

sets.

2. Preliminaries

Firstly, we recall some definitions and results of semirings and fuzzy algebra which we

shall use in this paper.

Definition 1 ([4]). A non-empty set S together with two binary operations ’+’ and ’·’ is said to

be a semiring if

(i) (S,+) is an abelian semigroup;

(ii) (S, ·) is a semigroup and

(iii) a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a for all a, b, c ∈ S.

Let (S,+, ·) be a semiring. If there exists an element ’0S ’ ∈ S such that a+0S = a = 0S+ a

and a · 0S = 0S = 0S · a for all a ∈ S; then ’0S ’ is called the zero element of S. If there exists

an element ’1S ’ ∈ S such that a · 1S = a = 1S · a for all a ∈ S, then ’1S ’ is called the identity

element of S.

A semiring may or may not have a zero and an identity element.

• Throughout this paper we consider a semiring (S,+, ·)with zero element ’0S ’ and identity

element ’1S ’. Unless otherwise stated a semiring (S,+, ·) will be denoted simply by S and

multiplication ’·’ will be denoted by juxtaposition.

Definition 2 ([4]). A semiring (S,+, ·) is said to be commutative if (S, ·) is commutative.

Definition 3 ([4]). Let I be a nonempty subset of a semiring S. Then

(i) I is said to be a left ideal of S if (I ,+) is a subsemigroup of (S,+) and sa ∈ I for all s ∈ S

and for all a ∈ I .
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(ii) I is said to be a right ideal of S if (I ,+) is a subsemigroup of (S,+) and as ∈ I for all s ∈ S

and for all a ∈ I .

(iii) I is said to be an ideal of S if it is both a left ideal and a right ideal of S.

Definition 4 ([4]). A proper ideal P of a semiring S is said to be prime if AB ⊆ P for any two

ideals A, B of S implies that either A⊆ P or B ⊆ P.

Proposition 1 ([4]). The following conditions in a semiring S are equivalent:

(i) P is a prime ideal of S.

(ii) {ar b : r ∈ S} ⊆ P if and only if a ∈ P or b ∈ P.

Definition 5 ([4]). A proper ideal I of a semiring S is said to be completely prime if ab ∈ I for

a, b in S implies that a ∈ I or b ∈ I .

Proposition 2 ([4]). A prime ideal P of a semiring S is completely prime if and only if ab ∈ P

implies that ba ∈ P for any a, b ∈ S.

Definition 6 ([8]). An interval number on [0,1], denoted by ea, is defined as the closed subin-

terval of [0,1], where ea = [a−, a+] satisfying 0≤ a− ≤ a+ ≤ 1.

• For any two interval numbers ea = [a−, a+] and eb = [b−, b+] we define :

(i) ea ≤ eb if and only if a− ≤ b− and a+ ≤ b+.

(ii) ea = eb if and only if a− = b− and a+ = b+.

(iii) ea < eb if and only if ea 6= eb and ea ≤ eb.

Note 1. We write ea ≥ eb whenever eb ≤ ea and ea > eb whenever eb < ea. We denote the interval

number [0,0] by e0 and [1,1] by e1.

Definition 7 ([2]). Let {eai : i ∈ Λ} be a family of interval numbers, where eai = [a
−
i

, a+
i
]. Then

we define supi∈Λ{eai} = [supi∈Λ a−
i

, supi∈Λ a+
i
] and infi∈Λ{eai}= [infi∈Λ a−

i
, infi∈Λ a+

i
].

• Suppose D[0,1] denotes the set of all interval numbers on [0,1].

Definition 8 ([14]). Let S be a non-empty set. A mapping µ : S −→ [0,1] is called a fuzzy

subset of S.

Definition 9 ([8]). Let S be a non-empty set. A mapping eµ : S −→ D[0,1] is called an interval-

valued fuzzy subset of S.

• For simplicity, throughout this paper we shall use the term ’i.v. fuzzy subset’ for ’interval-

valued fuzzy subset’.
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Note 2. If eµ be an i.v. fuzzy subset of a set S, then eµ(x) is an interval number, where x ∈ S.

Suppose eµ(x) = [α,β] for some x ∈ S. Then we have 0 ≤ α ≤ β ≤ 1. So we can always

define two fuzzy subsets µ− and µ+ of S such that µ−(x) = α and µ+(x) = β . Thus we have

eµ(x) = [µ−(x),µ+(x)] for all x ∈ S. Conversely, suppose we have two fuzzy subsets µ− and µ+

of S such that 0 ≤ µ−(x) ≤ µ+(x) ≤ 1 for all x ∈ S. Then we can define an i.v. fuzzy subset eµ
of S such that eµ(x) = [µ−(x),µ+(x)] for all x ∈ S.

Definition 10. Let X 6= ; be a set and A ⊆ X . Then the interval-valued characteristic function

eχA of A is an i.v. fuzzy subset of X , defined as follows:

eχA(x) =

(
e1 when x ∈ A.

e0 when x /∈ A.

Definition 11. Let fµ1 and fµ2 be two i.v. fuzzy subsets of a non-empty set X . Then fµ1 is said to

be subset of fµ2, denoted by fµ1 ⊆ fµ2, if fµ1(x) ≤fµ2(x) i.e. µ−
1
(x)≤ µ−

2
(x) and µ+

1
(x) ≤ µ+

2
(x)

for all x ∈ X , where fµ1(x) = [µ
−
1 (x),µ

+
1 (x)] and fµ2(x) = [µ

−
2 (x),µ

+
2 (x)].

Definition 12 ([8]). Let eµ be an i.v. fuzzy subset of a non-empty set X and [α,β] ∈ D[0,1].

Then the level subset of eµ, denoted by U(eµ, [α,β]), is defined as :

U(eµ, [α,β]) =
n

x ∈ X : eµ(x)≥ [α,β]
o

.

If we consider two interval numbers [α1,β1] and [α2,β2] such that [α1,β1] > [α2,β2],

then we have [α1,β1]≥ [α2,β2] and [α1,β1] 6= [α2,β2].

In this case, we find that U(eµ, [α1,β1])⊆ U(eµ, [α2,β2]), since for any

x ∈ U(eµ, [α1,β1]) =⇒ eµ(x)≥ [α1,β1] ≥ [α2,β2] =⇒ x ∈ U(eµ, [α2,β2]).

So we have the following result :

Proposition 3. If [α1,β1] and [α2,β2] be two interval numbers such that [α1,β1] > [α2,β2]

then U(eµ, [α1,β1] ⊆ U(eµ, [α2,β2]).

Definition 13 ([8]). The interval Min-norm is a function

Mini : D[0,1]×D[0,1]−→ D[0,1], defined by: Mini(ea,eb) = [min(a−, b−), min(a+, b+)] for

all ea,eb ∈ D[0,1], where ea = [a−, a+] and eb = [b−, b+].

Definition 14. The interval Max-norm is a function Max i : D[0,1] × D[0,1] −→ D[0,1],

defined by: Max i(ea,eb) = [max(a−, b−), max(a+, b+)] for all ea,eb ∈ D[0,1], where

ea = [a−, a+] and eb = [b−, b+].

Definition 15. Let fµ1 and fµ2 be two i.v. fuzzy subsets of a non-empty set X and ’·’ be a binary

composition on X . Then the composition of these two i.v. fuzzy subsets is an i.v. fuzzy subset of

X , defined by :

(fµ1 ◦fµ2)(x) =





supx=a·b

n
Mini
�
fµ1(a),fµ2(b)
�o

, when x = a · b for some a, b ∈ X .

e0, otherwise.

When we consider the composition of two i.v. fuzzy subsets of a semiring, the second case will not

arise as we consider a semiring with identity element in this paper.
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Thus the composition of two i.v. fuzzy subsets eµ1 and eµ2 of a semiring S is given by

(eµ1◦eµ2)(x) = supx=ab

n
Mini
�
eµ1(a), eµ2(b)
�o

for all x ∈ S such that x = ab for some a, b ∈ S.

• Throughout this paper we assume that any two interval numbers in D[0,1] are

comparable i.e. for any two interval numbers ea and eb in D[0,1], we have either ea ≤ eb
or ea > eb.

2.1. Interval-Valued Fuzzy Prime Ideal of a Semiring

Definition 16. A non-empty i.v. fuzzy subset eµ of a semiring S (i.e. eµ(x) 6= e0 for some x ∈ S)

is said to be interval-valued fuzzy ideal of S if

(i) eµ(x + y) ≥ Mini(eµ(x), eµ(y))

(ii) eµ(x y)≥ Max i(eµ(x), eµ(y)) for all x , y ∈ S.

Example 1. We consider the semiring N0 of non-negative integers with respect to usual addition

and multiplication. Let eµ be an i.v. fuzzy subset of N0, defined by :

eµ(x) =





e1 if x = 0,

[0.5,0.6] if x is non-zero even,

[0.3,0.4] if x is odd.

Then eµ is an i.v. fuzzy ideal of N0.

Remark 1. Let eµ be an i.v. fuzzy ideal of a semiring S. Then eµ(0S)≥ eµ(x) for all x ∈ S.

Lemma 1. Let S be a semiring and A be a subset of S. Then A is an ideal of S if and only if eχA is

an i.v. fuzzy ideal of S.

Proof. Let A be an ideal of S. Then 0S ∈ A. So eχA(0S) = e1 and hence eχA is non-empty. Now

suppose that x , y ∈ S.

Case 1: Let Max i(eχA(x), eχA(y)) = e0. Then eχA(x) = e0 and eχA(y) = e0. So

eχA(x y)≥ e0= Max i(eχA(x), eχA(y)) and eχA(x + y) ≥ e0= Mini(eχA(x), eχA(y)).

Case 2: Let Max i(eχA(x), eχA(y)) = e1. Then eχA(x) = e1 or eχA(y) = e1. This implies that x ∈ A

or y ∈ A. Then x y ∈ A, since A is an ideal of S. This shows that

eχA(x y) = e1= Max i(eχA(x), eχA(y)). Now

Max i(eχA(x), eχA(y)) = e1=⇒ Mini(eχA(x), eχA(y)) = e0 or e1.

Mini(eχA(x), eχA(y)) = e0=⇒ eχA(x + y) ≥ Mini(eχA(x), eχA(y)).

Mini(eχA(x), eχA(y)) = e1 =⇒ eχA(x) = e1 and eχA(y) = e1 =⇒ x ∈ A and y ∈ A =⇒ x + y ∈ A

(since A is an ideal of S) =⇒ eχA(x+ y) = e1= Mini(eχA(x), eχA(y)). Consequently, eχA is an i.v.

fuzzy ideal of S.

Conversely, let eχA be an i.v. fuzzy ideal of S. Then eχA is non-empty. So eχA(s) 6= e0 for some

s ∈ S. This implies that eχA(s) = e1 for some s ∈ S. So s ∈ A. Hence A is non-empty. Let x , y ∈ A.
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Then eχA(x) = e1 = eχA(y). Now since eχA is an i.v. fuzzy ideal of S, we have eχA(x + y) ≥
Mini(eχA(x), eχA(y)) = Mini(e1,e1) = e1. So eχA(x + y) ≥ e1. Also eχA(x + y) ≤ e1, since eχA(z) ≤ e1
for all z ∈ S. Thus eχA(x + y) = e1. So we find that x + y ∈ A. Now, let a ∈ A and s1 ∈ S. Then

eχA(a) = e1. Now since eχA is an i.v. fuzzy of S, we have eχA(s1a) ≥ Max i(eχA(a), eχA(s1) = e1.

So eχA(s1a) ≥ e1. Again eχA(s1a) ≤ e1. Thus we find that eχA(s1a) = e1. Consequently, s1a ∈ A.

Similarly, we can show that as1 ∈ A. Hence A is an ideal of S.

Lemma 2. A non-empty i.v. fuzzy subset eµ of a semiring S is an i.v. fuzzy ideal of S if and only

if U(eµ, [α,β]) are ideals of S for all [α,β] ∈ Imeµ.

Proof. First suppose that eµ is an i.v. fuzzy ideal of S. Let [α,β] be an arbitrary element in

Imeµ. Now consider the level subset U(eµ, [α,β]). Since [α,β] ∈ Imeµ, we have eµ(s0) = [α,β]

for some s0 ∈ S. This implies that s0 ∈ U(eµ, [α,β]). So, U(eµ, [α,β]) is non-empty. Now take

x , y ∈ U(eµ, [α,β]). Then we have eµ(x) ≥ [α,β] and eµ(y) ≥ [α,β]. Since eµ is an i.v. fuzzy

ideal of S, we have eµ(x + y) ≥ Mini(eµ(x), eµ(y)) ≥ [α,β]. So we get x + y ∈ U(eµ, [α,β]).

Again let a ∈ U(eµ, [α,β]) and s1 ∈ S. Then eµ(a) ≥ [α,β]. Since eµ is an i.v. fuzzy ideal of S,

we have eµ(s1a) ≥ Max i(eµ(s1), eµ(a))≥ [α,β]. This implies that s1a ∈ U(eµ, [α,β]). Similarly,

we can show that as1 ∈ U(eµ, [α,β]). Thus U(eµ, [α,β]) is an ideal of S. Since [α,β] is

arbitrary, it follows that U(eµ, [α,β]) are ideals of S for all [α,β] ∈ Imeµ.

Conversely, suppose that U(eµ, [α,β]) are ideals of S for all [α,β] ∈ Imeµ. Let

x , y ∈ S and let eµ(x) = [α1,β1] and eµ(y) = [α2,β2]. This shows that x ∈ U(eµ, [α1,β1])

and y ∈ U(eµ, [α2,β2]). Without loss of generality, we consider [α1,β1] > [α2,β2]. Then by

Proposition 3, we have U(eµ, [α1,β1])⊆ U(eµ, [α2,β2]). So we find that

x , y ∈ U(eµ, [α2,β2]). Now since U(eµ, [α,β]) are ideals of S for all

[α,β] ∈ Imeµ, U(eµ, [α2,β2]) is an ideal of S. Thus x , y ∈ U(eµ, [α2,β2]) implies that x + y ∈
U(eµ, [α2,β2]). Therefore

eµ(x + y) ≥ [α2,β2] = Mini([α1,β1], [α2,β2]) = Mini(eµ(x), eµ(y)).

Now let s, t ∈ S be such that eµ(t) = [α3,β3]. Then t ∈ U(eµ, [α3,β3]). Therefore st ∈
U(eµ, [α3,β3]), since U(eµ, [α3,β3]) is an ideal of S. So eµ(st) ≥ [α3,β3] = eµ(t). Similarly, if we

take eµ(s) = [α3,β3], we can prove that eµ(st) ≥ eµ(s). Consequently, eµ(st) ≥ Max i(eµ(s), eµ(t)).
Hence eµ is an i.v. fuzzy ideal of S.

Definition 17. If eµ be an i.v. fuzzy ideal of a semiring S, then the ideals U(eµ, [α,β]) of S, where

[α,β] ∈ Imeµ, are called the level ideals of eµ.

Lemma 3. Let S be a semiring and eµ be an i.v. fuzzy ideal of S. Then for any x , y ∈ S;

eµ(x)≥ eµ(y) whenever x ∈< y >, the principal ideal generated by y.

Proof. Since S is a semiring with identity, we find that

< y >=
n∑n

i=1 ri ysi : ri, si ∈ S and n ∈ N
o

. Now x ∈< y > implies that x =
∑n

i=1 ri ysi for

some ri, si ∈ S and n ∈ N. Then

eµ(x) = eµ
� n∑

i=1

ri ysi

�
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= eµ(r1 ys1 + r2 ys2 + . . .+ rn ysn)

= eµ
�
(r1 ys1 + r2 ys2 + . . .+ rn−1 ysn−1) + rn ysn

�

≥ Mini
�
eµ(r1 ys1 + r2 ys2 + . . .+ rn−1 ysn−1), eµ(rn ysn)

�
(Since eµ is an i.v. fuzzy ideal of S)

≥ Mini
�
eµ(r1 ys1 + . . .+ rn−1 ysn−1), Max i(eµ(rn y), eµ(sn))

�
(Since eµ is an i.v. fuzzy ideal of S)

≥ Mini
�
eµ(r1 ys1 + . . .+ rn−1 ysn−1), Max i(Max i(eµ(rn), eµ(y)), eµ(sn))

�

≥ Mini
�
eµ(r1 ys1 + . . .+ rn−1 ysn−1), eµ(y)

�

...

≥ eµ(y).

Thus we get that eµ(x)≥ eµ(y).

Lemma 4. Let I be an ideal of a semiring S and [α,β] ≤ [γ,δ] 6= e0 be any two interval numbers

on [0,1]. Then the i.v. fuzzy subset eµ of S, defined by :

eµ(x) =
(
[γ,δ] when x ∈ I ,

[α,β] otherwise,

is an i.v. fuzzy ideal of S.

Proof. Since I is an ideal of S, we have 0S ∈ I . Then eµ(0S) = [γ,δ] 6= e0. So eµ is non-empty.

Now let x , y ∈ S.

Case 1: Let Max i(eµ(x), eµ(y)) = [α,β]. Then eµ(x) = [α,β] and

eµ(y) = [α,β] =⇒ eµ(x y)≥ [α,β] = Max i(eµ(x), eµ(y))

and eµ(x + y) ≥ [α,β] = Mini(eµ(x), eµ(y)).
Case 2: Let Max i(eµ(x), eµ(y)) = [γ,δ]. Then eµ(x) = [γ,δ] or eµ(y) = [γ,δ] =⇒ x ∈ I or

y ∈ I =⇒ x y ∈ I (since I is an ideal of S) =⇒ eµ(x y) = [γ,δ] = Max i(eµ(x), eµ(y)). Now

Max i(eµ(x), eµ(y)) = [γ,δ] =⇒ Mini(eµ(x), eµ(y)) = [α,β] or [γ,δ].

Mini(eµ(x), eµ(y)) = [α,β] =⇒ eµ(x + y) ≥ [α,β] = Mini(eµ(x), eµ(y)). Again

Mini(eµ(x), eµ(y)) = [γ,δ] =⇒ eµ(x) = [γ,δ] and eµ(y) = [γ,δ] =⇒ x ∈ I and

y ∈ I =⇒ x+y ∈ I (since I is an ideal of S)=⇒ widetildeµ(x+y) = [γ,δ] = Mini(eµ(x), eµ(y)).
Thus in all cases we find that eµ(x + y) ≥ Mini(eµ(x), eµ(y)) and eµ(x y) ≥ Max i(eµ(x), eµ(y)).
Consequently, eµ is an i.v. fuzzy ideal of S.

Lemma 5. Let eµ be an i.v. fuzzy ideal of a semiring S. Then the set

eµ0 = {x ∈ S : eµ(x) = eµ(0S)} is an ideal of S.

Proof. Since 0S ∈ eµ0, eµ0 is non-empty. Let x , y ∈ eµ0. Then eµ(x) = eµ(0S) = eµ(y). Now,

since eµ is an i.v. fuzzy ideal of S, we have eµ(x + y) ≥ Mini(eµ(x), eµ(y)) = eµ(0S). Also
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by Remark 1, we have eµ(0S) ≥ eµ(x + y). Thus eµ(x + y) = eµ(0S). So x + y ∈ eµ0. Let

s ∈ S and t ∈ eµ0. Then eµ(t) = eµ(0S). Now since eµ is an i.v. fuzzy ideal of S, we have

eµ(st) ≥ Max i(eµ(s), eµ(t)) = Max i(eµ(s), eµ(0S)) = eµ(0S) (since eµ(0S) ≥ eµ(s), by Remark 1).

Also since eµ(0S) ≥ eµ(st), we have eµ(st) = eµ(0S). Thus st ∈ eµ0. Similarly, we can show that

ts ∈ eµ0. Consequently, eµ0 is an ideal of S.

Definition 18. An i.v. fuzzy ideal eµ of a semiring S is said to be an interval-valued fuzzy prime

ideal of S if eµ is not a constant function (i.e. |Imeµ| ≥ 2) and for any two i.v. fuzzy idealsfµ1 and

fµ2 of S, fµ1 ◦fµ2 ⊆ eµ implies that either fµ1 ⊆ eµ or fµ2 ⊆ eµ.

Theorem 1. Let I be a prime ideal of a semiring S and [α,β] ∈ D[0,1] \ {e1}. Let eµ be an i.v.

fuzzy subset of S, defined by :

eµ(x) =
(
e1 when x ∈ I ,

[α,β] otherwise.

Then eµ is an i.v. fuzzy prime ideal of S.

Proof. By Lemma 4, it follows that eµ is an i.v. fuzzy ideal of S. Clearly, eµ is non-constant.

Let fµ1 and fµ2 be two i.v. fuzzy ideals of S such that (fµ1 ◦fµ2) ⊆ eµ. We have to prove that

either fµ1 ⊆ eµ or fµ2 ⊆ eµ. If possible, let fµ1 * eµ and fµ2 * eµ. Then there exist x , y ∈ S such

that fµ1(x) � eµ(x) and fµ2(y) � eµ(y). Now according to our assumption, any two interval

numbers in D[0,1] are comparable. So we find that fµ1(x) > eµ(x) and fµ2(y) > eµ(y). This

implies that eµ(x) 6= e1 and eµ(y) 6= e1. Hence eµ(x) = eµ(y) = [α,β]. So x /∈ I and y /∈ I .

Since I is a prime ideal of S, there exists s ∈ S such that xs y /∈ I , by Proposition 1. Therefore

eµ(xs y) = [α,β]. Now,

(fµ1 ◦fµ2)(xs y) = sup
xs y=pq

n
Mini
�
fµ1(p),fµ2(q)
�o

≥Mini
�
fµ1(x),fµ2(s y)
�

≥Mini
�
fµ1(x),fµ2(y)
�

(Since eµ2 is an i.v. fuzzy ideal of S)

>Mini
�
eµ(x), eµ(y)
�

=[α,β] = eµ(xs y).

This contradicts the fact that (fµ1 ◦fµ2) ⊆ eµ. Consequently, either fµ1 ⊆ eµ or fµ2 ⊆ eµ. Hence eµ
is an i.v. fuzzy prime ideal of S.

From the above theorem, we can easily produce an example of an i.v. fuzzy prime ideal

of a semiring as follows:

Example 2. Let eµ be an i.v. fuzzy subset of the set of non-negative integers N0 defined by:

eµ(x) =
(
e1 when x ∈ 3No,

[0.5,0.6] otherwise.

Then eµ is an i.v. fuzzy prime ideal of N0.
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Theorem 2. If eµ be an i.v. fuzzy prime ideal of a semiring S, then

(i) eµ(0S) = e1.

(ii) |Imeµ| = 2.

(iii) eµ0 =
n

x ∈ S : eµ(x) = eµ(0S)
o

is a prime ideal of S.

Proof. Let eµ be an i.v. fuzzy prime ideal of a semiring S.

(i) If possible, let eµ(0S) 6= e1. Since any two interval numbers in D[0,1] are comparable, it

follows that eµ(0S)< e1. Since eµ is an i.v. fuzzy prime ideal of S, eµ is non-constant. Also

eµ(0S)≥ eµ(x) for all x ∈ S, by Remark 1. Since eµ is non-constant, there exists s ∈ S such

that eµ(0S)> eµ(s). Now we construct two i.v. fuzzy subsets fµ1 and fµ2 of S as follows :

fµ1(x) =

(
e1 when x ∈ eµ0,

e0 otherwise,
and fµ2(x) = eµ(0S) for all x ∈ S.

Since eµ is an i.v. fuzzy ideal of S, we have eµ0 is an ideal of S, by Lemma 5. Then by

Lemma 4, we have fµ1 is an i.v. fuzzy ideal of S. Also fµ2 is an i.v. fuzzy ideal of S,

since it is a constant function. Let x ∈ S be such that eµ(x) = eµ(0S). This implies that

fµ1(x) = e1. Then for any y ∈ S,

Mini
�
fµ1(x),fµ2(y)
�
=fµ2(y) = eµ(0S) = eµ(x y). (Since eµ is an i.v. fuzzy prime ideal of

S, it is an i.v. fuzzy ideal of S. So eµ(0S)≥ eµ(x y), by Remark 1 and

eµ(x y) ≥ eµ(x) = eµ(0S). So we get eµ(x y) = eµ(0S)). Now, let x ∈ S be such that

eµ(x) 6= eµ(0S). This implies that fµ1(x) = e0. Then for any y ∈ S,

Mini
�
fµ1(x),fµ2(y)
�
= e0≤ eµ(x y). Thus for any z ∈ S,

supz=x y

n
Mini
�
fµ1(x),fµ2(y)
�o
≤ eµ(z) i.e. (fµ1 ◦fµ2)(z) ≤ eµ(z). This implies that fµ1 ◦

fµ2 ⊆ eµ. Since eµ is an i.v. fuzzy prime ideal of S, it follows that either fµ1 ⊆ eµ or fµ2 ⊆ eµ.

But fµ1(0S) = e1 > eµ(0S) and fµ2(s) = eµ(0S) > eµ(s). Thus we arrive at a contradiction.

Consequently, eµ(0S) = e1.

(ii) Since eµ is an i.v. fuzzy prime ideal of S, it follows that eµ is non-constant. So

|Imeµ| ≥ 2. If possible, let |Imeµ| > 2. Let a, b ∈ S be such that e1> eµ(a)> eµ(b). Now we

construct two i.v. fuzzy subsets fµ1 and fµ2 of S as follows :

fµ1(x) =

(
e1 when x ∈< a >

e0 otherwise,
and fµ2(x) = eµ(a) for all x ∈ S.

By Lemma 4, we have fµ1 is an i.v. fuzzy ideal of S. Also fµ2 is an i.v. fuzzy ideal of S,

since it is a constant function. Now suppose x ∈< a > for x ∈ S. Then fµ1(x) = e1. So for

any y ∈ S, Mini
�
fµ1(x),fµ2(y)
�
= fµ2(y) = eµ(a) ≤ eµ(x y). (Since x ∈< a >, we have

eµ(x)≥ eµ(a), by Lemma 3. Also since eµ is an i.v. fuzzy ideal of S, we have eµ(x y)≥ eµ(x)
which implies that eµ(x y) ≥ eµ(a)). Now let x ∈ S be such that x /∈< a >. This implies
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that fµ1(x) = e0. Then for any y ∈ S,

Mini
�
fµ1(x),fµ2(y)
�
= e0≤ eµ(x y). Therefore for any z ∈ S,

supz=x y

n
Mini
�
fµ1(x), widetildeµ2(y)

�o
≤ eµ(z) i.e. (fµ1 ◦fµ2)(z)≤ eµ(z). This implies

that fµ1◦fµ2 ⊆ eµ. Now since eµ is an i.v. fuzzy prime ideal of S, we find that either fµ1 ⊆ eµ
or fµ2 ⊆ eµ. But fµ1(a) = e1 > eµ(a) and fµ2(b) = eµ(a) > eµ(b). This contradicts the fact

that either fµ1 ⊆ eµ or fµ2 ⊆ eµ. Hence |Imeµ| = 2.

(iii) Since eµ is an i.v. fuzzy prime ideal of S, eµ0 is an ideal of S, by Lemma 5. Also eµ
is non-constant. So eµ0 is a proper ideal of S. Now let A, B be any two ideals of S

such that AB ⊆ eµ0. Since A, B are ideals of S, eχA and eχB are i.v. fuzzy ideals of S, by

Lemma 1. Let x ∈ S. If (eχA ◦ eχB)(x) = e0, we find that (eχA ◦ eχB)(x) = e0 ≤ eχeµ0
(x). If

(eχA ◦ eχB)(x) 6= e0, (eχA ◦ eχB)(x) = supx=pq

n
Mini
�
eχA(p), eχB(q)
�o
6= e0. This shows that

supx=pq

n
Mini
�
eχA(p), eχB(q)
�o
= e1. Then Mini

�
eχA(p), eχB(q)
�
= e1 for some p,q ∈ S

such that x = pq, where eχA(p) = e1 and eχB(q) = e1. This implies that p ∈ A and q ∈ B

i.e. pq ∈ AB. Since AB ⊆ eµ0 we obtain that x = pq ∈ eµ0. Thus eχeµ0
(x) = e1. Then

(eχA◦ eχB)(x) = eχeµ0
(x). Consequently, (eχA◦ eχB)(x)≤ eχeµ0

(x) for all x ∈ S. So we get that

eχA ◦ eχB ⊆ eχeµ0
. Let y ∈ S. If eχeµ0

(y) = e0 we find that eχeµ0
(y) ≤ eµ(y). If eχeµ0

(y) = e1, it

follows that y ∈ eµ0. Then we get that eµ(y) = eµ(0S). Again since eµ is an i.v. fuzzy prime

ideal of S, we find that eµ(0S) = e1, by Theorem 2(i). Thus eχeµ0
(y) = eµ(y). So we see

that eχeµ0
(y)≤ eµ(y) for all y ∈ S. Consequently, eχeµ0

⊆ eµ. Thus we get eχA ◦ eχB ⊆ eχeµ0
⊆ eµ

i.e. eχA ◦ eχB ⊆ eµ. Since eµ is an i.v. fuzzy prime ideal of S, we find that either eχA ⊆ eµ or

eχB ⊆ eµ. Suppose eχA ⊆ eµ. Let z ∈ A. Then eχA(z) = e1. Also since eχA ⊆ eµ, we obtain that

eχA(z) ≤ eµ(z). This implies that eµ(z) ≥ e1 i.e. eµ(z) = e1. Since eµ is an i.v. fuzzy prime

ideal of S, we have eµ(0S) = e1, by Theorem 2(i). Thus eµ(z) = eµ(0S). Consequently,

z ∈ eµ0. So we find that A⊆ eµ0. Similarly, we can show that B ⊆ eµ0 whenever eχB ⊆ eµ.

Thus we see that for any two ideals A, B of S, AB ⊆ eµ0 =⇒ either A ⊆ eµ0 or B ⊆ eµ0.

Hence eµ0 is a prime ideal of S.

From the above two theorems we have the following result:

Theorem 3. If eµ be an i.v. fuzzy subset of a semiring S, then eµ is an i.v. fuzzy prime ideal of S

if and only if Imeµ = {e1, [α,β]} where [α,β] ∈ D[0,1] \ {e1} and eµ0 is a prime ideal of S.

Theorem 4. Let I( 6= S) be a subset of a semiring S. Then I is a prime ideal of S if and only if eχI

is an i.v. fuzzy prime ideal of S.

Proof. Let I be a prime ideal of S. Now in Theorem 1, if we replace [α,β] by e0, we find

that eχI is an i.v. fuzzy prime ideal of S.

Conversely, let eχI be an i.v. fuzzy prime ideal of S. Then

(eχI)0 =
n

x ∈ S : eχI(x) = eχI(0S)
o
=
n

x ∈ S : eχI(x) = e1
o
= I . Hence I is a prime ideal of S,

by Theorem 2(iii).
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Lemma 6. Let eµ be an i.v. fuzzy prime ideal of a semiring S. Then for any a, b ∈ S; in f
n
eµ(asb) :

s ∈ S
o
= Max i
�
eµ(a), eµ(b)
�

.

Proof. Since eµ is an i.v. fuzzy prime ideal of S, we have Imeµ = {e1, [α,β]}, where [α,β] ∈
D[0,1] \ {e1} and eµ0 is a prime ideal of S, by Theorem 3.

Case 1: Let Max i
�
eµ(a), eµ(b)
�
= e1. This implies that either eµ(a) = e1 or eµ(b) = e1 i.e.

eµ(a) = eµ(0S) or eµ(b) = eµ(0S), by Theorem 2(i). Therefore either a ∈ eµ0 or b ∈ eµ0. This

implies that asb ∈ eµ0 for all s ∈ S, by Proposition 1. Therefore eµ(asb) = eµ(0S) = e1 for all

s ∈ S, by Theorem 2(i). This shows that in f
n
eµ(asb) : s ∈ S
o
= e1= Max i
�
eµ(a), eµ(b)
�

.

Case 2: Let Max i
�
eµ(a), eµ(b)
�
= [α,β]. Then eµ(a) = [α,β] and eµ(b) = [α,β], since Imeµ =

{e1, [α,β]}. This implies that a /∈ eµ0 and b /∈ eµ0. Since eµ0 is a prime ideal of S, there

exists s0 ∈ S such that as0 b /∈ eµ0, by Proposition 1. Then eµ(as0 b) = [α,β]. Consequently,

in f
n
eµ(asb) : s ∈ S
o
= Max i
�
eµ(a), eµ(b)
�

.

Theorem 5. Let eµ be an i.v. fuzzy prime ideal of a semiring S and a, b be any two elements of

S. Then the following are equivalent :

(i) eµ(ab) = Max i
�
eµ(a), eµ(b)
�

.

(ii) eµ(ab) = eµ(ba).

Proof. (i) =⇒ (ii) : Let eµ(ab) = Max i
�
eµ(a), eµ(b)
�

. Then

eµ(ab) = Max i
�
eµ(a), eµ(b)
�
= Max i
�
eµ(b), eµ(a)
�
= eµ(ba).

(ii) =⇒ (i) : Let eµ(ab) = eµ(ba) for any two elements a, b of S. Then eµ(asb) = eµ(bas) for all

s ∈ S. Also since eµ is an i.v. fuzzy prime ideal of S,

eµ(asb) = eµ(bas)≥ Max i(eµ(ba), eµ(s))≥ eµ(ba) = eµ(ab) for all s ∈ S. Hence

in f
n
eµ(asb) : s ∈ S
o
≥ eµ(ab). Now by Lemma 6, we have

Max i
�
eµ(a), eµ(b)
�
= in f
n
eµ(asb) : s ∈ S
o

. So Max i
�
eµ(a), eµ(b)
�
≥ eµ(ab). Again

eµ(ab)≥ Max i
�
eµ(a), eµ(b)
�

. Consequently, eµ(ab) = Max i
�
eµ(a), eµ(b)
�

.

2.2. Interval-Valued Fuzzy Completely Prime Ideal of a Semiring

Definition 19. Let S be a semiring and x ∈ S. Let ea ∈ D[0,1] \ {e0}. Then an i.v. fuzzy subset

xea of S is called an interval-valued fuzzy point of S if

xea(y) =

(
ea if x = y,

e0 otherwise.

An interval-valued fuzzy point xea is said to be contained in an i.v. fuzzy subset eµ of S, denoted

by xea ∈ eµ, if ea ≤ eµ(x).
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Remark 2. Let xea be an i.v. fuzzy point of a semiring S and eµ be an i.v. fuzzy subset of S. Then

xea ∈ eµ if and only if xea ⊆ eµ.

Remark 3. Let xea and yeb be two i.v. fuzzy points of a semiring S. Then

(xea ◦ yeb) =
�

x y
�

Mini(ea,eb)
.

Definition 20. A non-constant i.v. fuzzy ideal eµ of a semiring S is said to be an interval-valued

fuzzy completely prime ideal of S if for any two i.v. fuzzy points xea and yeb of S, xea ◦ yeb ∈ eµ=⇒
either xea ∈ eµ or yeb ∈ eµ.

Theorem 6. Every i.v. fuzzy completely prime ideal of a semiring S is an i.v. fuzzy prime ideal

of S.

Proof. Let eµ be an i.v. fuzzy completely prime ideal of S. Then eµ is non-constant. Let

fµ1 and fµ2 be any two i.v. fuzzy ideals of S such that fµ1 ◦fµ2 ⊆ eµ. Let fµ1 * eµ. This implies

that there exists x ∈ S such that fµ1(x) � eµ(x). Now since according to our assumption, any

two interval numbers of D[0,1] are comparable, we have fµ1(x) > eµ(x). This shows that

xfµ1(x)
/∈ eµ. Now for any y ∈ S and w ∈ S

(xfµ1(x)
◦ yfµ2(y)

)(w) =
�

x y
�

Mini(fµ1(x),fµ2(y))
(w) (by Remark 3)

=

(
Mini(fµ1(x),fµ2(y)) when w = x y,

e0 otherwise.

Now eµ(w) ≥ (fµ1 ◦ fµ2)(w) = supw=x y

n
Mini(fµ1(x),fµ2(y))

o
≥ Mini(fµ1(x),fµ2(y)) (when

w = x y) = (xfµ1(x)
◦ yfµ2(y)

)(w). Also when w 6= x y, we have eµ(w) ≥ (xfµ1(x)
◦ yfµ2(y)

)(w).

This shows that (xfµ1(x)
◦ yfµ2(y)

)⊆ eµ i.e. (xfµ1(x)
◦ yfµ2(y)

) ∈ eµ, by Remark 2. Now since eµ is an

i.v. fuzzy completely prime ideal of S and xfµ1(x)
/∈ eµ, we have yfµ2(y)

∈ eµ. This implies that

fµ2(y) ≤ eµ(y) =⇒fµ2 ⊆ eµ. Consequently, eµ is an i.v. fuzzy prime ideal of S.

In general, the converse of the Theorem 6 for an arbitrary semiring is not true.

Example 3. Consider the semiring M2(R
+
0 ), where M2(R

+
0 ) denotes the set of all 2× 2 matrices

with non-negative real entries.

Let eµ be an i.v. fuzzy subset of M2(R
+
0 ), defined by :

eµ(A) =
(
e1 when A is the null matrix,

e0 otherwise.

Then it can be shown that eµ is an i.v. fuzzy prime ideal of M2(R
+
0 ) but eµ is not an i.v. fuzzy

completely prime ideal of M2(R
+
0 ).

But in particular, for commutative semiring we have the following result :

Theorem 7. Every i.v. fuzzy prime ideal of a commutative semiring S is an i.v. fuzzy completely

prime ideal of S.
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Proof. Let S be a commutative semiring and eµ be an i.v. fuzzy prime ideal of S. Then eµ is

non-constant. Let xea and yeb be any two i.v. fuzzy points of S such that xea ◦ yeb ∈ eµ. Then by

Remark 3, we get (x y)
Mini(ea,eb) ∈ eµ. So we have Mini(ea,eb)≤ eµ(x y).

Now we construct two i.v. fuzzy subsets fµ3 and fµ4 of S as follows:

fµ3(z) =

(
ea when z ∈< x >,

e0 otherwise;
and fµ4(z) =

(
eb when z ∈< y >,

e0 otherwise.

Then from Lemma 4, it follows that fµ3 and fµ4 are i.v. fuzzy ideals of S. Now

(fµ3 ◦fµ4)(z) = supz=uv

n
Mini(fµ3(u),fµ4(v))

o
. When z can not be expressed as z = uv, where

u ∈< x > and v ∈< y >, then (fµ3 ◦fµ4)(z) = e0 ≤ eµ(z). Let z = uv for some u, v ∈ S, where

u ∈< x > and v ∈< y >. Then (fµ3 ◦fµ4)(z) = supz=uv

n
Mini(ea,eb)
o
= Mini(ea,eb). Since S is

a commutative semiring with identity, u ∈< x > and v ∈< y >=⇒ u = s1 x and v = s2 y for

some s1, s2 ∈ S. Then we have

eµ(z) = eµ(uv) = eµ(s1 xs2 y) = eµ(s1s2 x y)≥ eµ(x y)≥ Mini(ea,eb) = (fµ3 ◦fµ4)(z).

This implies that (fµ3 ◦fµ4) ⊆ eµ. Since eµ is an i.v. fuzzy prime ideal of S, we have either

fµ3 ⊆ eµ or fµ4 ⊆ eµ. This implies that fµ3(x) ≤ eµ(x) or fµ4(y) ≤ eµ(y) =⇒ ea ≤ eµ(x) or
eb ≤ eµ(y) =⇒ xea ∈ eµ or yeb ∈ eµ. Consequently, eµ is an i.v. fuzzy completely prime ideal of S.

Proposition 4. Let eµ be an i.v. fuzzy completely prime ideal of a semiring S. Then

eµ0 = {x ∈ S : eµ(x) = eµ(0S)} is a completely prime ideal of S.

Proof. Let eµ be an i.v. fuzzy completely prime ideal of a semiring S. Then eµ is an i.v. fuzzy

prime ideal of S, by Theorem 6. So eµ0 is a prime ideal of S, by Theorem 2(iii) and hence a

proper ideal of S. Let x , y ∈ S be such that x y ∈ eµ0. Then eµ(x y) = eµ(0S) = e1, by Theorem

2(i). This implies that (x y)e1 ∈ eµ. Thus by Remark 3, we get (xe1 ◦ ye1) ∈ eµ. This implies that

either xe1 ∈ eµ or ye1 ∈ eµ, since eµ is an i.v. fuzzy completely prime ideal of S. Thus it follows

that either e1≤ eµ(x) or e1≤ eµ(y).
=⇒ eµ(x) = e1 or eµ(y) = e1 i.e. eµ(x) = eµ(0S) or eµ(y) = eµ(0S).

=⇒ x ∈ eµ0 or y ∈ eµ0.

Hence eµ0 is a completely prime ideal of S.

Theorem 8. Let eµ be an i.v. fuzzy subset of a semiring S such that Imeµ = {e1, [α,β]}; where

[α,β] ∈ D[0,1] \ {e1} and eµ0 = {x ∈ S : eµ(x) = eµ(0S)} is a completely prime ideal of S. Then eµ
is an i.v. fuzzy completely prime ideal of S.

Proof. Let eµ be an i.v. fuzzy subset of a semiring S such that Imeµ = {e1, [α,β]}; where

[α,β] ∈ D[0,1] \ {e1} and eµ0 = {x ∈ S : eµ(x) = eµ(0S)} is a completely prime ideal of S. Since

eµ0 is a completely prime ideal of S, it is a prime ideal of S. Then by Theorem 3, we get that

eµ is an i.v. fuzzy prime ideal and hence a non-constant i.v. fuzzy ideal of S. Let xea and yeb be

any two arbitrary i.v. fuzzy points of S such that xea ◦ yeb ∈ eµ. Then by Remark 3, we find that



T. Dutta, S. Kar, S. Purkait / Eur. J. Math. Sci., 1 (2012), 1-16 14

(x y)
Mini(ea,eb) ∈ eµ i.e. Mini(ea,eb) ≤ eµ(x y). We have to prove that either xea ∈ eµ or yeb ∈ eµ. If

possible, let xea /∈ eµ and yeb /∈ eµ. Since according to our assumption any two interval numbers

are comparable, it follows that ea > eµ(x) and eb > eµ(y). Therefore eµ(x) = [α,β] = eµ(y),
since Imeµ = {e1, [α,β]}. This implies that x /∈ eµ0 and y /∈ eµ0. Now since eµ0 is a completely

prime ideal of S, we have x y /∈ eµ0. Since eµ is an i.v. fuzzy prime ideal of S, eµ(0S) = e1, by

Theorem 2(i). So x y /∈ eµ0 =⇒ eµ(x y) 6= eµ(0S) = e1. Consequently, eµ(x y) = [α,β], since

Imeµ = {e1, [α,β]}. Now

[α,β] = eµ(x y)≥ Mini(ea,eb)> Mini(eµ(x), eµ(y)) = [α,β]. Thus we arrive at a contradiction.

Hence either xea ∈ eµ or yeb ∈ eµ. Thus eµ is an i.v. fuzzy completely prime ideal of S.

Theorem 9. Let eµ be an i.v. fuzzy ideal of a semiring S with Imeµ = {e1, [α,β]}; where [α,β] ∈
D[0,1] \ {e1}. Then eµ is an i.v. fuzzy completely prime ideal of S if and only if its only proper

level ideal U(eµ,e1) is a completely prime ideal of S.

Proof. Since Imeµ = {e1, [α,β]}, where [α,β] ∈ D[0,1]\{e1}, we have U(eµ, [α,β]) = S. So

only proper level ideal of eµ is U(eµ,e1), by Lemma 2. Let eµ be an i.v. fuzzy completely prime

ideal of S. Then eµ0 is a completely prime ideal of S, by Proposition 4. Now since eµ is an i.v.

fuzzy completely prime ideal of S, we find that eµ is an i.v. fuzzy prime ideal of S, by Theorem

6. Then eµ(0S) = e1, by Theorem 2(i). Also we find that

U(eµ,e1) = {x ∈ S : eµ(x) ≥ e1} = {x ∈ S : eµ(x) = e1} = {x ∈ S : eµ(x) = eµ(0S)} = eµ0. Hence

U(eµ,e1) is a completely prime ideal of S.

Conversely, let U(eµ,e1) be a completely prime ideal of S. Since eµ is an i.v. fuzzy ideal of S, it

follows that eµ(0S) ≥ eµ(x) for all x ∈ S, by Remark 1. Again since Imeµ = {e1, [α,β]}, where

[α,β] ∈ D[0,1] \ {e1}, we find that eµ(0S) = e1. Thus

U(eµ,e1) = {x ∈ S : eµ(x) ≥ e1} = {x ∈ S : eµ(x) = e1} = {x ∈ S : eµ(x) = eµ(0S)} = eµ0. So eµ0 is a

completely prime ideal of S. Then by Theorem 8, we have eµ is an i.v. fuzzy completely prime

ideal of S.

Theorem 10. Let eµ be an i.v. fuzzy prime ideal of a semiring S. Then eµ is an i.v. fuzzy completely

prime ideal of a semiring S if and only if for any two i.v. fuzzy points xea and yeb of S, xea ◦ yeb ∈
eµ =⇒ yeb ◦ xea ∈ eµ.

Proof. Let eµ be an i.v. fuzzy completely prime ideal of S. Since eµ is an i.v. fuzzy prime

ideal of S, we find that Imeµ = {e1, [α,β]}, where [α,β] ∈ D[0,1]\{e1} and eµ0 is a prime ideal

of S, by Theorem 3. In fact we find that eµ0 is a completely prime ideal of S, since eµ is an

i.v. fuzzy completely prime ideal of S, by Proposition 4. Let xea and yeb be any two i.v. fuzzy

points of S such that xea ◦ yeb ∈ eµ. Then we have
�

x y
�

Mini(ea,eb)
∈ eµ, by Remark 3. This implies

that Mini(ea,eb)≤ eµ(x y). Now

Case 1: Let x y ∈ eµ0. Since eµ is an i.v. fuzzy prime ideal of S, we find that eµ(0S) = e1, by

Theorem 2(i). Then x y ∈ eµ0 implies that eµ(x y) = eµ(0S) = e1. Now since the prime ideal eµ0

of S is also a completely prime ideal of S and x y ∈ eµ0, we find that y x ∈ eµ0, by Proposition

2. This shows that eµ(y x) = eµ(0S) = e1, by Theorem 2(i) . Therefore, Mini(ea,eb) ≤ eµ(x y) =

eµ(y x). This implies that (y x)
Mini(ea,eb) ∈ eµ i.e. (y x)

Mini(eb,ea) ∈ eµ. Then by Remark 3, it follows
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that yeb ◦ xea ∈ eµ.

Case 2: Let x y /∈ eµ0. This implies that eµ(x y) 6= eµ(0S) i.e. eµ(x y) 6= e1, by Theorem 2(i). Then

eµ(x y) = [α,β], since Imeµ = {e1, [α,β]}. So we have

eµ(y x) ≥ [α,β] = eµ(x y) ≥ Mini(ea,eb) =⇒ (y x)
Mini(ea,eb) ∈ eµ =⇒ (y x)

Mini(eb,ea) ∈ eµ. Then by

Remark 3, we get yeb ◦ xea ∈ eµ.

Conversely, let eµ be an i.v. fuzzy prime ideal of S such that for any two i.v. fuzzy points

xea and yeb of S, xea ◦ yeb ∈ eµ =⇒ yeb ◦ xea ∈ eµ. Since eµ is an i.v. fuzzy prime ideal of S,

Imeµ = {e1, [α,β]}, where [α,β] ∈ D[0,1] \ {e1} and eµ0 is a prime ideal of S, by Theorem 3.

Let x y ∈ eµ0. Then eµ(x y) = eµ(0S) = e1, by Theorem 2(i). So (x y)e1 ∈ eµ =⇒ xe1 ◦ ye1 ∈ eµ (by

Remark 3) =⇒ ye1 ◦ xe1 ∈ eµ =⇒ (y x)e1 ∈ eµ (by Remark 3)

=⇒ e1≤ eµ(y x) =⇒ eµ(y x) = e1= eµ(0S) (by Theorem 2(i)) =⇒ y x ∈ eµ0. Hence widetildeµ0

is a completely prime ideal of S, by Proposition 2. Thus eµ0 is a completely prime ideal of S

and Imeµ = {e1, [α,β]}, where [α,β] ∈ D[0,1]\{e1}. Consequently, by Theorem 8 we find that

eµ is an i.v. fuzzy completely prime ideal of S.
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