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Abstract. In this paper we established the existence of solutions of Lower semicontinuous quantum
stochastic differential inclusions(QSDI). The existence of a continuous selection of a predefined integral
operator was established. This selection which is an adapted stochastic process is a solution of the
Lower semicontinuous quantum stochastic differential inclusions.
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1. Introduction

The theory of quantum stochastic differential inclusions is a multivalued analogue of quan-
tum stochastic calculus of Hudson and Parthasarathy formulation [9]. The theory of differen-
tial inclusions has vast applications and one of its motivations is the application in the study of
control theory. In [5] the existence of solutions of quantum stochastic differential inclusions
with Lipschitzian coefficients lying in certain locally convex spaces was established. A further
study of this quantum stochastic differential inclusions was done in [6] with hypermaximal
monotone type and in [7] for evolution type. The topological properties of solution sets and
existence of continuous selections of the solution sets for the Lipschitzian quantum stochastic
differential inclusions were established in [2] and [3].

For a classical differential inclusion the existence of solutions of discontinuous cases, up-
per and lower semicontinuous differential inclusions were established in [1] and [4]. These
weaker forms of regularity of the coefficients are also applicable in the study of optimal quan-
tum stochastic control theory [10]. The aim of this work is to establish the existence of
solution of Lower semicontinuous quantum stochastic differential inclusions. We first define
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an integral operator which is a mapping consisting of adapted stochastic processes and es-
tablished the existence of a continuous map which is a selection of the mapping. Hence we
established the existence of at least a solution of the Lower semicontinuous quantum stochas-
tic differential inclusions. This is a generalization of the result in [1] to our non commutative
setting. This will lead in a later work to further applications of quantum stochastic calculus
to quantum stochastic differential equations with discontinuous coefficients, solutions of per-
tinent quantum stochastic control problems and quantum optics. In sequel the work shall be
arranged as follows: section 2 shall be for preliminaries on notations and definitions while
section 3 shall be for our main results.

2. Preliminaries

In this section we state the definitions and notations which shall be employed in the sequel.

2.1. Notations

In what follows, if U is a topological space, we denote by clos(U), the collection of all
non-empty closed subsets of U.
To each pair (D, H) consisting of a pre-Hilbert space D and its completion H, we associate the
set Lvt (D,H) of all linear maps x from D into H, with the property that the domain of the
operator adjoint contains D. The members of L7 (D,H) are densely-defined linear operators
on H which do not necessarily leave D invariant and L; (D, H) is a linear space when equipped
with the usual notions of addition and scalar multiplication.
To H corresponds a Hilbert space I'(H) called the boson Fock space determined by H. A
natural dense subset of I'(H) consists of linear space generated by the set of exponential
vectors(Guichardet, [8]) in I'(H) of the form

(=P :XRf, feH,

n=0

where ®° f =1 and ®" f is the n-fold tensor product of f with itself for n > 1.

In what follows, D is some pre-Hilbert space whose completion is & and y is a fixed Hilbert
space.

L)Z,(R+)(resp. L)z,([O, t)), resp. L?([t,oo)) t € R, ) is the space of square integrable y-valued
maps on R, (resp .[0,t), resp. [t,00)).

The inner product of the Hilbert space Z ® F(Lﬁ(RJr)) will be denoted by (.,.) and || . || the
norm induced by (.,.) .

Let E,E, and Ef, t > O be linear spaces generated by the exponential vectors in Fock spaces
F(L?(RJF)), F(Lﬁ([O, t))) and F(L?([t, 00))) respectively ;

o = L (DYE, Z ® [(L7(R,)))
o, =L} (DRE,, Z ® F(Lﬁ([o, )T
=T, LT (E, r(Lﬁ([t,oo)))), t>0
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where ® denotes algebraic tensor product and I,(resp.I') denotes the identity map on #Z ®
F(L?([O, t))))(resp .F(L?([t, 00)))), t > 0 For every 1, & € D®E define

|| X ”n§':| (TI;X@ |1 X € .o

then the family of seminorms
{ll- llpz: m, € € DOE}

generates a topology 7,, , weak topology .

The completion of the locally convex spaces (.«/, 1,,) , (., T,,) and (", T,,) are respectively
denoted by ./, .¢¢/; and .&/".

We define the Hausdorff topology on clos(.«/) as follows:

For x € .« , M, N € clos(/) and 1, & € DRE, define

Pne( M, N) =max(8,e (M, N),6pe(N, M),

where

Ope( M, N) = sup de(x, A),

and
dyele, A) = inf [l =y llye

The Hausdorff topology which shall be employed in what follows, denoted by, 7 , is gener-
ated by the family of pseudometrics {p,:(.) : ,& € D®E}. Moreover, if /£ € clos(.¢/), then
| A ||,z is defined by

| 11y = e (A, {OD;

for arbitrary 1, £ € DQE.
For A, B € clos(C) and x € C , a complex number, define

d(x,B)=inf |x —y |,
YEB
6(A,B) =supd(x, B),
X€A
and
p(A B) =max(6(A,B), 6(B,A)).
Then p is a metric on clos(C) and induces a metric topology on the space. We also define:
dye((t,x), (tg, x0)) = max{| t — to |, | x — xq [le}-

Let I € R,. A stochastic process indexed by I is an .o/ -valued measurable map on I.
A stochastic process X is called adapted if X(t) € ./, foreach t € 1.
We write Ad(.«/) for the set of all adapted stochastic processes indexed by I.
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Definition 1. A member X of Ad( Jz?j is called

(1) weakly absolutely continuous if the map t — (n,X(t)&), t € I is absolutely continuous for
arbitrary 1, & € DQE,

(ii) locally absolutely p-integrable if || X(.) ||fl g IS Lebesgue -measurable and integrable on
[0,t) S I for each t € I and arbitrary 1,§ € DQE.
We denote by Ad(.#), 4 (resp.Lfoc(ﬂ?j) the SE of all weakly, absolutely continuous(resp.
locally absolutely p-integrable) members of Ad(.«/).
Stochastic integrators: Let L‘Y"jloc(l&) [resp.Ll‘;‘(’ﬂ’loc(RjL)] be the linear space of all measur-
able , locally bounded functions from R, to y [resp. to B(y) , the Banach space of bounded

endomorphi.sms of y]. If f € L;f’loc(RJr) and 7 € L;‘Ey)’loc(IR{Jr) , then 7f is the member of
L, (B,) given by (nf)(t) = n(0)f (1) , t € R,
For f € L)z,(]R) L and w € LB‘(’ Y)ZOC(]R+); the annihilation , creation and gauge operators,

a(f),a*(f) and A(n) in L} (D, F(Lﬁ(R)Jr)) respectively, are defined as:
a(fle(g) = (f, 82w, )e(8);
d
at(fle(g) = d_e(g +0f)lo=0
o
d
A(m)e(g) = Ee(e""f) lo=0

forall g L)%(RJr).
For arbitrary f € L;"}OC(RJJ and 7 € L;‘EYUOC(RJF) , they give rise to the operator-valued maps

Af,Aj[ and A, defined by:

Af(8) = alf 1g0,0):
A= a*(F 2100,
A(6) = Amro,)

for all t € R, , where y; denotes the indicator function of the Borel set I € R,. The maps
Af,A}r and A, are stochastic processes , called annihilation, creation and gauge processes,
respectively, when their values are identified with their ampliations on Z ® F(Lﬁ(]RQ). These
are the stochastic integrators in Hudson and Parthasarathy[9] formulation of boson quantum
stochastic integration.

For processes p,q,u,v € leoc(.,(;i-j, the quantum stochastic integral:

J (p(s)dAn(s)+q(s)dAf(s)+u(s)dA§(s)—|—v(s)ds), to,t €R,

is interpreted in the sense of Hudson-Parthasarathy[9].
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2.2. Quantum Stochastic Differential Inclusions

Definition 2. (a) By a multivalued stochastic process indexed by I € R, we mean a multi-
function on I with values in clos(.</).

(b) If ® is a multivalued stochastic process indexed by I € R, then a selection of ® is a
stochastic process X : I — .o/ with the property that X(t) € ®(t) for almost all t € I.

(¢) A multivalued stochastic process ® will be called (i) adapted if ®(t) C Jzﬁf? foreach t e Ry ;
(ii) measurable if t — d,(x, ®(t)) is measurable for arbitrary x € .«/,n,& € (DBE)

(d) locally absolutely p-integrable if t —|| ®(t) ||,,e, t € R, lie in LfOC(I)for arbitrary
1, € (DOE).

For p € (0,00) and I € R,, the set of all locally absolutely p-integrable multivalued
stochastic processes will be denoted by Lfoc(,d )mvs- Denote by LfOC(I X o )mys the set of
maps ® : I X . — clos(.&/) such that t — ®(t,X(t)), t €1, lies in Lfoc(ﬂ)mvs for every
Xely ().

Moreovet, if & € LY (I X &), then we denote by

L(®)={¢ € LP(A): ¢ is a selection of ®}.

Let f,g € L?(]RLF) , T E L;‘En’loc(RJr), I, the identity map on Z ® F(L)z,(]R{Jr)), and M is any of
the stochastic processes Af,Az, Apands— s, s €R,.
We introduce the stochastic integral{resp. differential} expressions as follows:

If®eL? (IX.d)y,and(t,X)€IxL2 (), then

f ®(s,X(s))dM(s) = {f ¢(s)dM(s): ¢ € L2(<I>)}.

0

This leads to the following definition:
Definition 3. Let E,F,G,H € LZZOC(I x /) and (tg, xg) be a fixed point of I X /. Then a relation
of the form

dX(t) € E(t,X(t))dA(t)+ F(t,X(t))dAs(t)

+ G(t,X(t))dA;r(t) +H(t,X(t))dt almostall t €1, (1)

X(to) = xo
is called Quantum stochastic differential inclusions(QSDI) with coefficients E, F, G, H and initial
data (tg, xg).
Equation(1) is understood in the integral form:

t

X(t) e xy+ J (E(s,X(s))dA(s)+F(s,X(s))dAs (s)

to

+G(s,X(s))dA;(s) + H(s,X(s))ds), almostall t € I

called a stochastic integral inclusion with coefficients E, F, G, H and initial data (t, x()
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An equivalent form of (1) has been established in [5], Theorem 6.2 as follows:
For n,§ € DQE, a,f € L%(]RQ with n = c®e(a), & = d®e(f) , define the following
complex-valued functions:
Uap> Vg Oq: I —C, TCR,

by
pap(t) = (alt), T(t)B(t)),,
vp(t) = (f(t), B(t))y,
oq(t) = (a(t), g(t)),,
tel, f,ge Liloc(RJr), e L;‘Eﬂ loc- TO these functions we associate the maps uE, vF, oG,

P from I x .o/ into the set of sesquilinear forms on DQ®E defined by :

(ME)(t,x)(n, &) = {(n, uap(t)p(t,x)E) : p(t,x) € E(t,x)},
(vF)(t,x)(n, &) = {{n,vg(t)q(t,x)E) : q(t,x) € F(t,x)},
(0G)(t,x)(m, &) = {(n,ou()u(t,x)&) s u(t,x) € G(t,x)},

P(t, x)(n, &) = (WE)(t, x)(n, £) + (VE)(t, x)(n, E) @
+ (0G)(t,x)(n, &)+ H(t,x)(n, &),
H(t,x)(n, &) ={v(t,x)(n,&):v(.,X(.))
is a selection of
H(,X()VX € L? ()} (3)
Then, Problem (1) is equivalent to
d
E(T),X(t)i) € P(t,X(t))(n, &), @

X(to) = xo
for arbitrary 1, £ € DQE , almost all t € .
The notion of solution of (1) or equivalently (3) is defined as follows:
Definition 4. By a solution of (1) or equivalently (3), we mean a stochastic process

¢ €Ad(A),pqe N L2 () such that

loc
do(t) € E(t, p(t))dAL(t) + F(t, p(t))dAs(t)

+ G(t, cp(t))dAJg’(t) +H(t,o(t))dt almost all t €1,
v(to) = ¢

or equivalently

d
72 (0,0 ()8) € P(t, ()1, ©),
¢(to) = o

for arbitrary n,&§ € DE, almostall t € I.



M. Ogundiran, E. Ayoola / Eur. J. Math. Sci., 2 (2013), 1-16 7

The existence of solution of (1) implies the existence of solution of (3) and vice-versa. As
explained in [5], for the map P:

P(t,x)(n, &) # B(t, (n, xE))

for some complex-valued multifunction P definedonI xCfort €1, x € .o, 1,& € DRE.

2.3. Lower Semicontinuous Multivalued Maps

Definition 5. (a) Let A € clos(.&/) be non-empty and I C R,.
A multifunction ® : I X & — clos(.&/) will be said to be lower semicontinuous at a point
(to,xo) € I X A, if for every € > 0,7m,& € DRE there exists 5,z = 6,:((tg,x(),€) > 0
such that Vx e A, t €l if

dpe ((t, %), (tg, X)) < &,z then ®(tg,xo) C ®(t,x) + By (0).

If ® is lower semicontinuous(lsc) at every point (tq,xg) € I X A/, then it will be said to be
lower semicontinuous on I X A

(b) Analogously if ® is a sezsquilinear form valued multifunction, then the map
& : Ix N — 2°9P8E) i1l be said to be lower semicontinuous at a point (ty, xo) € I X A,
if for e;ery n,& € DYE, € > 0 there exists 5,r = 6,:((ty, Xo),€) > 0 such that Vx € A,
tel i

d'n& ((t) X), (tO’ XO)) < 51;5 then (b(tO’ XO)(n: 6) - ‘I’(t;x)(n, 5) +BE(O)

In what follows, a map shall be called lower semicontinuous on a domain if it is so at every
point of the domain.

The next result shows that, if uE, vF, oG, H are lower semicontinuous then
(t,x) — P(t,x)(n, &) is lower semicontinuous.

Proposition 1. Assume that the following holds:
(i) The coefficients E,F,G,H appearing in (1) belongs to the space LIZOC(I X . ) mys-

(ii) For an arbitrary elements 1, & € DQE, the maps uE, vF, oG, H defined by equation (2)
are lower semicontinuous on I X .<f.

Then, the map (t,x) — P(t,x)(n, &) is lower semicontinuous on I X .

Proof. For an arbitrary 1, & € DQE, since uE,vF,oG,H are lower semicontinuous I x .
Then for any point (ty,x,) € I X ./, given € > 0, there exist One s OneFsOne o Onen > 0,
such that for each M € {uE,vF,0G,H},

M(to, x0)(n, ) © M(£,x)(n,€) +B,(0) Vx € A, almostall ¢ €I and
dye ((¢, %), (to, X)) < e m-
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Hence the proposition follows from the relation:

P(tg, x0)(n, &) = (WE)(tg, Xo)(n, &) + (VF)(tg, x0)(n, &)
+(0G)(tg,x0)(n, &) +H(tg, x0)(n, &) +B.(0)
C P(t,x)(n, &) + Bs.(0).

3. Main Results

In this subsection under some assumptions, we prove an existence theorem for lower semi-
continuous quantum stochastic differential inclusions by using a predefined integral operator.

Definition 6. Let C(I) be the space of continuous maps from I to sesq(D®RE). For all
1n,§ €DRE; X,Z € Ad(H),yqc N L2 (), we define the set:

loc

Hpe = {0, X(0)E) € C(I) : IAERL; | (, X () —X(s))E) [< A |t —s |, t,s €I and X(t) = xo}.

Moreover, the integral operator . is defined as

d
(n,Z(t)E) e P(t,X(t))(m, &) a.e. t €I}

‘gné(X) = {<77>Z(t)§) S ,%,/ng . a

We also define the following sets as applicable in the subsequent result.
For any (t, x),(tg,xo) €I X .o/, A,z > 0, a real number; 7, £ € DQE.

Q(to,xo),lng = {(t,X) eI x J: dng((t) X), (th XO)) < A‘ng}:

where
dye((t, x), (tg, x0)) = max{| t — to [, || x —xq [le},
on,lng = {X SH:4 ” X = Xo ||7]£< A“r).{h
Qu,, = 1x € Tl x Il < Ayeh,
and set

Qe(n, &)= {(H,X€> X E Qe}

In what follows, we make the following assumptions:
I=1[ty, T], Aye >0and Q C I X ./, open, such that:

) Ix Qx(»%g cq,
(i) 3 Ap e >0V M € {E,F,G,H} with maxy Ay r < A, and

(i) || M(t,x) [lye< Ap,ne for each M on I x Q.12 -
’ 227
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Lemma 1. Suppose that K C 1 X o is compact.
For arbitrary pair 1, & € DE, suppose that the multivalued map

(t,x) — M(t,x)(n,&)

is lower semicontinuous for each M € {uE,vF,0G,H}.
For e >0, set

wpee(t,x)=supfwye: [ M(T,0M,E)+Q(n, &) # 0} (5)

(5.0€Q0 0,0y
Then

(a) for some w, > 0 we have

wpe (t,x) 2 w, for all (t,x) €T x 427,7;, & € DRE,

(b) for every continuous u, (t,u(t)) € K, there exists a measurable map t — v(t)(n, &), such
that

dné;:((t: X), (ta U.(t))) < We,
implies

d(v(t)(n,&),M(t,x)(n,&)) <e.

Proof. (a) The definition of lower semicontinuity implies that the set inside brackets in (4)
is non-empty , so that w, .(t, x) is positive.
We claim that it is a continuous function.
Fix o > 0 arbitrarily, and remark that whenever d, ((71,¢1),(72,{>2)) < %,

1 _ — N2
Q = Q(Tl,ijl),we((’rz,ijz)—%" c Q(fz,Cz),we((fz,Cz)—%) =Q

that is,

(| M(OME+QMmE#0=> (] M(T,00,8)+Qc(n,&) #0.

(7,0)eQ? (7,0)eqQ!

Whenever d, -((t,x),(t%,x*)) < %, setting (t,x) = (741,¢;), (t%,x*) = (74, ;) we obtain

20
Wnee(t,X) 2 wye (7, x7) = 3

while interchanging (t,x) and (t*, x*), we have

o
wng’e(f, .X') > a)ng’e(t*,x*) - ?



M. Ogundiran, E. Ayoola / Eur. J. Math. Sci., 2 (2013), 1-16 10

Hence (t,x) — w,¢ (t, x) is a continuous and positive map defined on a compact set.
(b) We define the map @, given by

(Lx)—=@(t,)m,E) = ()  MEOMmE)+Qn,&). (6)
(7,0)€Q(t,x),0e

Then & is lower semicontinuous . In fact let y* be in ®(t*,x*)(n, &), so that for every (7, )

in Q(t*,x*),w67
d(.y*> M(T, C)(T)’ g)) =€—- wn{,e(T) g); C‘)ng,e(f: g) >0

or equivalently , there exists y, (7,¢) in M(t,{)(n,&) so that | y* — y,:(7,{) [< e — %
By the lower semicontinuity of M, there exists 6 = §(7,{) so that (t/,{’) in Q(z,0),5 implies
d(y,e(7,8),M(7",¢)(n, &) < 7, hence, in particular

d(y*,M(7",{)(n, &) <e.

The open set

U = U Q(z,0),5(7,0)
(T)C)GQ(I'*,X*),OJE

contains the compact set Q(;+ ,+) ., , hence, whenever
dné((tax))(t*aj(‘*)) < P,

sufficiently small
Qt,x),0, C %,

and thus
d(y*,M(7,8)(n,&)) <eory"ed(t,x)(n,&).

Since the map t — ®(t,x)(n,&) is lower semicontinuous and has closed values, then by
Theorem 2.14.2 [1] there exists a measurable selection v(t)(n, &) of M(t,x)(n, &), which is
the required selection.

Proposition 2. Assume that the following holds

(i) For arbitrary m,& € DQE, the multivalued map (t,x) — G(t,x)(n,&) is lower semicon-
tinuous.

(i) g: 1% .o — sesq(DQE) is continuous single-valued map, and
(iii) ¢: o — R, is lower semicontinuous.

Then the map (t,x) — ®(t,x)(n, &) defined by

®(t,x)(1, &) = By (8(t, x)(m, E))( ) Gt x)(n, €)

is lower semicontinuous on its domain.
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Proof. Fix (t*,x*) in Dom®, y;& € ®(t*,x*)(n,&) and w > 0. For some
>0,y =gt x)(n, &) [=e(x") —o.
There exists §; such that to any (¢, x) € I X .« with d,e((t,x),(t%,x*)) < 6,, we can associate
y(t,x)(n, &) in G(t,x)(n, &) so that

* . o
| Yne (e0) = Ve |< minfo, g},

and &, such that
d'r){((t) x); (t*a x*) < 52
implies
o
e(x) > e(x") - 3,

and 63 such that
dng((t3 X), (t*3 X*) < 63

implies | g(t*, x*)(n, &) — g(t,x)(n, &) |< 5.
Then when d, ¢ ((t,x), (t*,x*) <min{5;, 8, 63},

| y(t,x)(n, &) — g(t,x)(n, E) | I ¥ (£, )1, &) = ¥y | + 1 ¥ — 8(t7,x)(n, &) |
+18(t", x)(n, &) — g(t,x)(n, &) |

O % O

< 3 +e(x*)—o+ 3

o
=e(x*) — 3 <e(x)

that is y(t,x)(n, &) € ®(t,x)(n, &), and

| y*(tzx)(nz g) _J/(t>x)(7b g) |< .

We now prove the existence of solution of Lower semicontinuous quantum stochastic differ-
ential inclusions.

Theorem 1. Suppose that the following holds:

(i) For every n,& € D®E, the map (t,x) — P(t,x)(n, &) is a non-empty compact and lower
semicontinuous multifunction.

(i) (to,xo) €1 x o, for all (t,x) €I x Qu, I A >0, such that | P(t,x)(n,&) |< A.
>2

Then there exists a set #,z and a continuous map ¢ : Kz — LY(I), a selection of Fne

Proof. We shall first show the existence of a finite number m(0) of measurable maps v;
from I into Q,(n,&); of a continuous partition of I into jio = [1% ., 79] with characteristic

-1 i
functions y; such that setting

2@, &) = D 1 (Ovi(£)(n, E),
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we have for every t:

d(g°w)(t)(n, &), P(t,u(t))(n,€)) < 1. (7)

In fact,set in Lemma(1), M to be P, € to be 1 and let w, be the constant provided by (a).
Let %' = Qui,,, we define %#'(n,&) = {(n,x&) : x € %'} a finite open covering of the
compact #,s. Let v;(t)(n, ), be the corresponding measurable functions as provided by (b).

Fix u and t ; where | x(u)(t)(n,&) [> 0, u is in Qi ,, d(vi(t)(n, &), P(t,u(t))(n,&)) < 1,
and (6) holds.
We claim that for n = 0,1, ... we can define ; m(n) measurable functions vl.(") from I into

) — o)

Qx(n, &), a continuous partition of I, ¢, (w), 7; ~(u)] having characteristic functions

xi(") such that setting

gm0, &)= ¥ MW (e)(n, ),
we have

(i) for every t,
1
d(g™w)()(n, &), B(t,u(t))(n, &) < on

1

except on a finite number of intervals , having total length 7,

(i)

1
£ @O, )~ " PO, ) I< Zgn = 1.

Assume the above to hold up to n =v — 1, we shall prove that it holds for n = v.

There exists an open set <" such that all the maps t — vl.(v_l)(t)(n, &) are continuous on
I\ &", and the measure of %" is smaller than #
Let 6 > 0 be such that || w —u ||,s< & implies that for each i,
| 'cl(.v_l)(u) — TEV_D(W) |< (27¥(4m(v —1)))~. A finite number of Qq, 5 covers . For each j
call E; the finite union of open intervals | t — 7;(@;) |< (27" (4(v — D) Li=1,..,mlv-1).
Then whenever u is in Qﬁj’g, when ¢ is any of the closed intervals whose union is I \ Ej,
g w)(t)(n, &) = g 1 @)(t)(n, &) = v} 1 (t)(n, &) for some i.
Hence when t belongs to the closed (I \ E;) \ ", the map t — g" tu(t)(n, &) is continuous.

Set | p}“(t)(n, €) | to be 24 on the open (E; U.~") and to be 23—_1 on the closed I'\ (E; U.&").
The map (t,x) — P;(t,x)(n, &) is defined by

]P)j(t) X)(n, g) = Qg"'_l(ﬁj)(t)(”r],g),|p}/(t)(’r),€)|(n7 g) ﬂp(t3 X)('f), g)

is strict for (t,x) in Q(ta,(0)),6°
In fact, when t is in (E; U&"). It is enough to remark that both ¢"~! and P take values in

QA("’): g)
Let (t,x) : tin I\ (E;U&"), || x —@;(t) l[,e< 6. Then a translate u(.) of @;(.) is in Qa6
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and is such that u(t) = x. For this u, g¥ "1 (u)(t)(n, &) = g”‘l(aj)(t)(n, &) and, by point (i) of
the induction

1
d(g" M w)(t)(n, &), B(t,x)(n, &) < >
Since t — p"(t) is lower semicontinuous and P; is strict, proposition 2 implies that

1

(t,x) = P;(t, x)(n, &) is lower semicontinuous. Set in Lemma 1, M to be P;, € to be o and
call w; the constant provided by point (a). A finite number of Q i wj("r), &) covers the compact
i

Hpe N Qq; 5(n,E) By Lemma 1(b), there exists for each i a measurable v]l:(t)(n, &) such that
d'r)g((t: X), (t; u;(t))) < w; 1mphes

. 1 1
di(Om, ), Bi(6, )0, ) < oo < 57 (8)

The collection of open sets %ji(n, &) = Qaj’g(')’], E)NQy wj("r), &) covers . Let )(J‘: be the
i

characteristic functions of the corresponding continuous partition {Z 7]; £ ;}of I. Set

g @O, E) =Y £V, ).
i,j

We claim that the functions le: and the map g" satisfy our induction assumptions.

Fix u and t. Whenever t belongs to jl.j(u), g'W)(t)(n, &) = v]l:(t)(n,g) and u belongs to
Qu;’wj, and by (7),

. 1
d(vi(t)(n, &), P;(t,u(t))(n, &) < o )]

Since P;(¢t,u(t))(n, &) < P(t,u(t))(n, &), (8) check point (i).

To check point (ii) , assume ¢t in I \ (E; U"). Then p"(t) = !

2v—1 >

P;(6,2)(n,£)) € Qor1@pome). iy = Qv (o) i1

hence
. 1
O, ) Qe 1 EN < 57 (10)
or
1
| 8" @)(t)(n, &) — g"HwW()(n, &) I< ST (1mn

except on an open set (E; U.~") with measure at most 2% The sequence of measurable maps
{g"(w)(.)(n, &)} is a Cauchy sequence converging to some measurable function that we denote

by g(u)(.)(n, &) and g(w)(t)(n, &) € P(¢t,u(t))(n, &).
Let K, ¢ be defined by:

Kpe = {u(t)(n, &) = (n,u(t)E) € Hpe - u(t)(n, &) is Lipschitzian and u(ty)(n, &) = xo}.
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The continuous map ¢ : K,z — K,z defined by p((n,u(t)&)) = (n, ¢(w)(t)E)

t

(n, e(@)(£)€) = xo + f g(u)(s)(n, &)ds,

to

| (n, e(W)(£2)E) — (n, ()(£1)E) | which gives

|J gW)(s)(n, &)ds | <l g |||J u(s)(n, &ds |
EKng.

Moreover,

d
i (n, p(W)()€) = g(wW)(t)(n, &) € P(t,u(t))(n, &).

We are left to show the continuity of ¢. In fact, we shall show directly that ¢ is uniformly
continuous.
From a(ii) above, for every 0, & € DQE,u(t)(n, &) € K,z

v+1 v 2T 2M
| &" " (W)(s)(n, &) — " (w)(s)(n, &) | ds < +
I

2v+1 2’V+1

T+M
= 2,V

so that

f|g”“(u)(S)(n,i)—g"(u)(S)(n,é)|d5+f | g2 W)(s)(n, &) — " W)(s)(m, &) | ds + ..
I I

1 1 1
<(=)NT+M)(A1+-=-4+-+...
< GT+MA+ 5+ +.0)

T+M
= 2n—1’

and since fz | g (w)(s)(n, &) — g(u)(s)(n, &) | ds converges to 0,

| o((n,u(t)E)) — e({n, w(t)E)) |< f | g()(s)(n, &) — g(w)(s)(n, &) | ds
=< f | g"(W)(s)(n, &) — g"(w)(s)(n, &) | ds + f | §"(W)(s)(n, &) — g(w)(s)(n, &) | ds
I I
+f | g"(w)(s)(n, &) — g(w)(s)(n, &) | ds
1

44T+M
Sf | " W), E) — " (W)(s)(n, £) | ds 4+ H L+ M)
I

2n
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Also, by a(ii)

n n 2M
fl | g"(W)(s)(n, &) — g"(w)(s)(n, &) [ ds < T
_ M
= o
Therefore | u(t)(n, &) —w(t)(n, &) |< 6 implies, for every t €1,
T+5M

| (1, e(@)(£)E) = (n, o(W)(£)E) | <

<e.

2Tl

Proving the continuity of ¢. Hence ¢ is the required selection of Z, .

From above we have the following existence result.

Corollary 1. For an arbitrary n,& € DQE, suppose that multivalued stochastic processes
M :Ix.of —2¢P8E” N e fuF VF oG, H}

are compact-valued, lower semicontinuous multifunction.
Let (tg,xp) €l x o.
Then the problem

dX(t) € E(t,X(t))dA(t)+ F(t,X(t))dAs(t)
+G(t,X(£))dA; (£) + H(t,X(¢))dt almost all t €1, (12)
X(to) =xo

has at least one solution defined on I lying in Ad(.),,qc N L% (o).

loc

References

[1] J.B Aubin and A. Cellina. Differential Inclusions, Springer- Verlag, Berlin, 1984.

[2] E.O. Ayoola. Topological properties of solution sets of Lipschitzian quantum stochastic
differential inclusions.Acta Appl. Math 100, 15-37, 2008.

[3] E.O. Ayoola. Continuous selections of solution sets of Lipschitzian quantum stochastic
differential inclusions.Int. J. Theor.Phys.43, 10, 2041-2059, 2004.

[4] K. Deimling. Multivalued differential equations, Walter de Gruyter, 1992.

[5] G.O.S. Ekhaguere. Lipschitzian quantum stochastic differential inclusions, Int. J. Theor.
Phys. 31, 11, 2003-2034, 1992.



REFERENCES 16

[6] G.O.S. Ekhaguere. Quantum stochastic differential inclusions of hypermaximal mono-
tone type Int. J. Theor. Phys. 34, 3, 323-353, 1995.

[7] G.O.S. Ekhaguere. Quantum stochastic evolutions Int. J. Theor. Phys.35, 9, 1909-1946,
1996.

[8] A. Guichardet, Symmetric Hilbert spaces and related topicsLecture Notes in Mathematics,
261, Springer-Verlag, Berlin(1972).

[9] R.L. Hudson, and K.R. Parthasarathy. Quantum Ito’s formula and stochastic evolutions,
Comm. Math. Phys. 93, 3, 301-323, 1984.

[10] M.O. Ogundiran and E.O. Ayoola. Mayer problem for Quantum stochastic control J.
Math. Phys. 51, 1, 023521-023521-8, 2010.



