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Abstract. In this paper we established the existence of solutions of Lower semicontinuous quantum
stochastic differential inclusions(QSDI). The existence of a continuous selection of a predefined integral
operator was established. This selection which is an adapted stochastic process is a solution of the
Lower semicontinuous quantum stochastic differential inclusions.
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1. Introduction

The theory of quantum stochastic differential inclusions is a multivalued analogue of quan-
tum stochastic calculus of Hudson and Parthasarathy formulation [9]. The theory of differen-
tial inclusions has vast applications and one of its motivations is the application in the study of
control theory. In [5] the existence of solutions of quantum stochastic differential inclusions
with Lipschitzian coefficients lying in certain locally convex spaces was established. A further
study of this quantum stochastic differential inclusions was done in [6] with hypermaximal
monotone type and in [7] for evolution type. The topological properties of solution sets and
existence of continuous selections of the solution sets for the Lipschitzian quantum stochastic
differential inclusions were established in [2] and [3].
For a classical differential inclusion the existence of solutions of discontinuous cases, up-
per and lower semicontinuous differential inclusions were established in [1] and [4]. These
weaker forms of regularity of the coefficients are also applicable in the study of optimal quan-
tum stochastic control theory [10]. The aim of this work is to establish the existence of
solution of Lower semicontinuous quantum stochastic differential inclusions. We first define
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an integral operator which is a mapping consisting of adapted stochastic processes and es-
tablished the existence of a continuous map which is a selection of the mapping. Hence we
established the existence of at least a solution of the Lower semicontinuous quantum stochas-
tic differential inclusions. This is a generalization of the result in [1] to our non commutative
setting. This will lead in a later work to further applications of quantum stochastic calculus
to quantum stochastic differential equations with discontinuous coefficients, solutions of per-
tinent quantum stochastic control problems and quantum optics. In sequel the work shall be
arranged as follows: section 2 shall be for preliminaries on notations and definitions while
section 3 shall be for our main results.

2. Preliminaries

In this section we state the definitions and notations which shall be employed in the sequel.

2.1. Notations

In what follows, if U is a topological space, we denote by clos(U), the collection of all
non-empty closed subsets of U .
To each pair (D, H) consisting of a pre-Hilbert space D and its completion H, we associate the
set L+w(D, H) of all linear maps x from D into H, with the property that the domain of the
operator adjoint contains D. The members of L+w(D, H) are densely-defined linear operators
on H which do not necessarily leave D invariant and L+w(D, H) is a linear space when equipped
with the usual notions of addition and scalar multiplication.
To H corresponds a Hilbert space Γ(H) called the boson Fock space determined by H. A
natural dense subset of Γ(H) consists of linear space generated by the set of exponential
vectors(Guichardet, [8]) in Γ(H) of the form

e( f ) =
∞
⊕

n=0

(n!)−
1
2

n
⊗

f , f ∈ H,

where
⊗0 f = 1 and

⊗n f is the n-fold tensor product of f with itself for n≥ 1.
In what follows, D is some pre-Hilbert space whose completion is R and γ is a fixed Hilbert
space.
L2
γ(R+)(resp. L2

γ([0, t)), resp. L2
γ([t,∞)) t ∈ R+) is the space of square integrable γ-valued

maps on R+ (resp .[0, t), resp. [t,∞)).
The inner product of the Hilbert space R ⊗ Γ(L2

γ(R+)) will be denoted by 〈., .〉 and ‖ . ‖ the
norm induced by 〈., .〉 .
Let E,Et and Et , t > 0 be linear spaces generated by the exponential vectors in Fock spaces
Γ(L2

γ(R+)),Γ(L
2
γ([0, t))) and Γ(L2

γ([t,∞))) respectively ;

A ≡ L+w(D⊗E,R ⊗Γ(L
2
γ(R+)))

At ≡ L+w(D⊗Et ,R ⊗Γ(L2
γ([0, t))))⊗ It

A t ≡ It ⊗ L+w(E
t ,Γ(L2

γ([t,∞)))), t > 0
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where ⊗ denotes algebraic tensor product and It(resp.It) denotes the identity map on R ⊗
Γ(L2

γ([0, t))))(resp .Γ(L2
γ([t,∞)))), t > 0 For every η,ξ ∈ D⊗E define

‖ x ‖ηξ=| 〈η, xξ〉 |, x ∈A

then the family of seminorms
{‖ . ‖ηξ: η,ξ ∈ D⊗E}

generates a topology τw , weak topology .
The completion of the locally convex spaces (A ,τw) , (At ,τw) and (A t ,τw) are respectively
denoted by fA , fAt and fA t .
We define the Hausdorff topology on clos( fA ) as follows:
For x ∈ fA ,M ,N ∈ clos( fA ) and η,ξ ∈ D⊗E, define

ρηξ(M ,N )≡max(δηξ(M ,N ),δηξ(N ,M )),

where

δηξ(M ,N )≡ sup
x∈M

dηξ(x ,N ),

and

dηξ(x ,N )≡ inf
y∈N
‖ x − y ‖ηξ .

The Hausdorff topology which shall be employed in what follows, denoted by, τH , is gener-
ated by the family of pseudometrics {ρηξ(.) : η,ξ ∈ D⊗E}. Moreover, ifM ∈ clos( fA ), then
‖M ‖ηξ is defined by

‖M ‖ηξ≡ ρηξ(M , {0});

for arbitrary η,ξ ∈ D⊗E.
For A, B ∈ clos(C) and x ∈ C , a complex number, define

d(x , B)≡ inf
y∈B
| x − y |,

δ(A, B)≡ sup
x∈A

d(x , B),

and

ρ(A, B)≡max(δ(A, B),δ(B, A)).

Then ρ is a metric on clos(C) and induces a metric topology on the space. We also define:

dηξ((t, x), (t0, x0)) =max{| t − t0 |,‖ x − x0 ‖ηξ}.

Let I ⊆ R+. A stochastic process indexed by I is an fA -valued measurable map on I .
A stochastic process X is called adapted if X (t) ∈ fAt for each t ∈ I .
We write Ad( fA ) for the set of all adapted stochastic processes indexed by I .
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Definition 1. A member X of Ad( fA ) is called

(i) weakly absolutely continuous if the map t 7→ 〈η, X (t)ξ〉 , t ∈ I is absolutely continuous for
arbitrary η,ξ ∈ D⊗E,

(ii) locally absolutely p-integrable if ‖ X (.) ‖p
ηξ

is Lebesgue -measurable and integrable on
[0, t)⊆ I for each t ∈ I and arbitrary η,ξ ∈ D⊗E.

We denote by Ad( fA )wac(resp.Lp
loc( fA )) the set of all weakly, absolutely continuous(resp.

locally absolutely p-integrable) members of Ad( fA ).
Stochastic integrators: Let L∞γ,loc(R+) [resp.L∞B(γ),loc(R+)] be the linear space of all measur-
able , locally bounded functions from R+ to γ [resp. to B(γ) , the Banach space of bounded
endomorphisms of γ]. If f ∈ L∞γ,loc(R+) and π ∈ L∞B(γ),loc(R+) , then π f is the member of
L∞γ,loc(R+) given by (π f )(t) = π(t) f (t) , t ∈ R+.

For f ∈ L2
γ(R)+ and π ∈ L∞B(γ),loc(R+); the annihilation , creation and gauge operators,

a( f ), a+( f ) and λ(π) in L+w(D,Γ(L2
γ(R)+)) respectively, are defined as:

a( f )e(g) = 〈 f , g〉L2
γ(R+)

e(g),

a+( f )e(g) =
d

dσ
e(g +σ f ) |σ=0,

λ(π)e(g) =
d

dσ
e(eσπ f ) |σ=0

for all g ∈ L2
γ(R+).

For arbitrary f ∈ L∞γ,loc(R+) and π ∈ L∞B(γ),loc(R+) , they give rise to the operator-valued maps

A f , A+f and Λπ defined by:

A f (t)≡ a( f χ[0,t)),

A+f (t)≡ a+( f χ[0,t)),

Λπ(t)≡ λ(πχ[0,t))

for all t ∈ R+ , where χI denotes the indicator function of the Borel set I ⊆ R+. The maps
A f , A+f and Λπ are stochastic processes , called annihilation, creation and gauge processes,

respectively, when their values are identified with their ampliations on R⊗Γ(L2
γ(R+)). These

are the stochastic integrators in Hudson and Parthasarathy[9] formulation of boson quantum
stochastic integration.
For processes p, q, u, v ∈ L2

loc( fA ), the quantum stochastic integral:

∫ t

t0

�

p(s)dΛπ(s) + q(s)dA f (s) + u(s)dA+g (s) + v(s)ds
�

, t0, t ∈ R+

is interpreted in the sense of Hudson-Parthasarathy[9].
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2.2. Quantum Stochastic Differential Inclusions

Definition 2. (a) By a multivalued stochastic process indexed by I ⊆ R+ we mean a multi-
function on I with values in clos( fA ).

(b) If Φ is a multivalued stochastic process indexed by I ⊆ R+, then a selection of Φ is a
stochastic process X : I → fA with the property that X (t) ∈ Φ(t) for almost all t ∈ I .

(c) A multivalued stochastic process Φ will be called (i) adapted if Φ(t)⊆ fAt for each t ∈ R+;
(ii) measurable if t 7→ dηξ(x ,Φ(t)) is measurable for arbitrary x ∈ fA ,η,ξ ∈ (D⊗E)

(d) locally absolutely p-integrable if t 7→‖ Φ(t) ‖ηξ, t ∈ R+ lie in Lp
loc(I) for arbitrary

η,ξ ∈ (D⊗E).

For p ∈ (0,∞) and I ⊆ R+, the set of all locally absolutely p-integrable multivalued
stochastic processes will be denoted by Lp

loc( fA )mvs. Denote by Lp
loc(I × fA )mvs the set of

maps Φ : I × fA → clos( fA ) such that t 7→ Φ(t, X (t)) , t ∈ I , lies in Lp
loc( fA )mvs for every

X ∈ Lp
loc( fA ).

Moreover, if Φ ∈ Lp
loc(I × fA )mvs, then we denote by

Lp(Φ)≡ {φ ∈ Lp( fA ) : φ is a selection of Φ}.

Let f , g ∈ L2
γ(R+) , π ∈ L∞B(γ),loc(R+), I , the identity map on R ⊗Γ(L2

γ(R+)), and M is any of

the stochastic processes A f , A+g ,Λπ and s 7→ sI, s ∈ R+.
We introduce the stochastic integral{resp. differential} expressions as follows:
If Φ ∈ L2

loc(I × fA )mvs and (t, X ) ∈ I × L2
loc( fA ) , then

∫ t

t0

Φ(s, X (s))dM(s)≡
�
∫ t

t0

φ(s)dM(s) : φ ∈ L2(Φ)
�

.

This leads to the following definition:

Definition 3. Let E, F, G, H ∈ L2
loc(I× fA ) and (t0, x0) be a fixed point of I× fA . Then a relation

of the form

dX (t) ∈ E(t, X (t))dΛπ(t) + F(t, X (t))dA f (t)

+ G(t, X (t))dA+g (t) +H(t, X (t))d t almost all t ∈ I ,

X (t0) = x0

(1)

is called Quantum stochastic differential inclusions(QSDI) with coefficients E, F, G, H and initial
data (t0, x0).
Equation(1) is understood in the integral form:

X (t) ∈ x0+

∫ t

t0

�

E(s, X (s))dΛπ(s) + F(s, X (s))dA f (s)

+G(s, X (s))dA+g (s) +H(s, X (s))ds
�

, almost all t ∈ I

called a stochastic integral inclusion with coefficients E, F, G, H and initial data (t0, x0)
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An equivalent form of (1) has been established in [5], Theorem 6.2 as follows:
For η,ξ ∈ D⊗E, α,β ∈ L2

γ(R+) with η = c ⊗ e(α) , ξ = d ⊗ e(β) , define the following
complex-valued functions:

µαβ , νβ , σα : I → C, I ⊂ R+
by

µαβ(t) = 〈α(t),π(t)β(t)〉γ,
νβ(t) = 〈 f (t),β(t)〉γ,
σα(t) = 〈α(t), g(t)〉γ,

t ∈ I , f , g ∈ L2
γ,loc(R+), π ∈ L∞B(γ),loc . To these functions we associate the maps µE, νF , σG,

P from I × fA into the set of sesquilinear forms on D⊗E defined by :

(µE)(t, x)(η,ξ) = {〈η,µαβ(t)p(t, x)ξ〉 : p(t, x) ∈ E(t, x)},
(νF)(t, x)(η,ξ) = {〈η,νβ(t)q(t, x)ξ〉 : q(t, x) ∈ F(t, x)},
(σG)(t, x)(η,ξ) = {〈η,σα(t)u(t, x)ξ〉 : u(t, x) ∈ G(t, x)},
P(t, x)(η,ξ) = (µE)(t, x)(η,ξ) + (νF)(t, x)(η,ξ)

+ (σG)(t, x)(η,ξ) +H(t, x)(η,ξ),

H(t, x)(η,ξ) = {v(t, x)(η,ξ) : v(., X (.))

(2)

is a selection of

H(., X (.))∀X ∈ L2
loc( fA )}. (3)

Then, Problem (1) is equivalent to

d

d t
〈η, X (t)ξ〉 ∈ P(t, X (t))(η,ξ),

X (t0) = x0

(4)

for arbitrary η,ξ ∈ D⊗E , almost all t ∈ I .
The notion of solution of (1) or equivalently (3) is defined as follows:

Definition 4. By a solution of (1) or equivalently (3), we mean a stochastic process
ϕ ∈ Ad( fA )wac ∩ L2

loc( fA ) such that

dϕ(t) ∈ E(t,ϕ(t))dΛπ(t) + F(t,ϕ(t))dA f (t)

+ G(t,ϕ(t))dA+g (t) +H(t,ϕ(t))d t almost all t ∈ I ,

ϕ(t0) = ϕ0

or equivalently

d

d t
〈η,ϕ(t)ξ〉 ∈ P(t,ϕ(t))(η,ξ),

ϕ(t0) = ϕ0

for arbitrary η,ξ ∈ D⊗E , almost all t ∈ I .
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The existence of solution of (1) implies the existence of solution of (3) and vice-versa. As
explained in [5], for the map P:

P(t, x)(η,ξ) 6= eP(t, 〈η, xξ〉)

for some complex-valued multifunction eP defined on I ×C for t ∈ I , x ∈ fA , η,ξ ∈ D⊗E.

2.3. Lower Semicontinuous Multivalued Maps

Definition 5. (a) Let N ∈ clos( fA ) be non-empty and I ⊆ R+.
A multifunction Φ : I ×N → clos( fA ) will be said to be lower semicontinuous at a point
(t0, x0) ∈ I ×N , if for every ε > 0,η,ξ ∈ D⊗E there exists δηξ = δηξ((t0, x0),ε) > 0
such that ∀x ∈ N , t ∈ I if

dηξ
�

(t, x), (t0, x0)
�

< δηξ then Φ(t0, x0)⊂ Φ(t, x) + Bηξ,ε(0).

If Φ is lower semicontinuous(lsc) at every point (t0, x0) ∈ I ×N , then it will be said to be
lower semicontinuous on I ×N .

(b) Analogously if Φ is a sesquilinear form valued multifunction, then the map
Φ : I×N → 2sesq(D⊗E)2 will be said to be lower semicontinuous at a point (t0, x0) ∈ I×N ,
if for every η,ξ ∈ D⊗E,ε > 0 there exists δηξ = δηξ((t0, x0),ε) > 0 such that ∀x ∈ N ,
t ∈ I , if

dηξ
�

(t, x), (t0, x0)
�

< δηξ then Φ(t0, x0)(η,ξ)⊂ Φ(t, x)(η,ξ) + Bε(0).

In what follows, a map shall be called lower semicontinuous on a domain if it is so at every
point of the domain.

The next result shows that, if µE, νF , σG, H are lower semicontinuous then
(t, x)→ P(t, x)(η,ξ) is lower semicontinuous.

Proposition 1. Assume that the following holds:

(i) The coefficients E, F, G, H appearing in (1) belongs to the space L2
loc(I × fA )mvs.

(ii) For an arbitrary elements η,ξ ∈ D⊗E, the maps µE, νF, σG, H defined by equation (2)
are lower semicontinuous on I × fA .

Then, the map (t, x)→ P(t, x)(η,ξ) is lower semicontinuous on I × fA .

Proof. For an arbitrary η,ξ ∈ D⊗E, since µE,νF,σG, H are lower semicontinuous I × fA .
Then for any point (t0, x0) ∈ I × fA , given ε > 0, there exist δηξ,E ,δηξ,F ,δηξ,G ,δηξ,H > 0,
such that for each M ∈ {µE,νF,σG, H},

M(t0, x0)(η,ξ)⊂ M(t, x)(η,ξ) + Bε(0) ∀x ∈ N , almost all t ∈ I and

dηξ
�

(t, x), (t0, x0)
�

< δηξ,M .
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Hence the proposition follows from the relation:

P(t0, x0)(η,ξ) = (µE)(t0, x0)(η,ξ) + (νF)(t0, x0)(η,ξ)

+ (σG)(t0, x0)(η,ξ) +H(t0, x0)(η,ξ) + Bε(0)

⊂ P(t, x)(η,ξ) + B5ε(0).

3. Main Results

In this subsection under some assumptions, we prove an existence theorem for lower semi-
continuous quantum stochastic differential inclusions by using a predefined integral operator.

Definition 6. Let C(I) be the space of continuous maps from I to sesq(D⊗E). For all
η,ξ ∈ D⊗E; X , Z ∈ Ad( fA )wac ∩ L2

loc( fA ), we define the set:

Kηξ = {〈η, X (t)ξ〉 ∈ C(I) : ∃λ ∈ R+; | 〈η, (X (t)− X (s))ξ〉 |< λ | t − s |, t, s ∈ I and X (t0) = x0}.

Moreover, the integral operator Fηξ is defined as

Fηξ(X ) = {〈η, Z(t)ξ〉 ∈ Kηξ :
d

d t
〈η, Z(t)ξ〉 ∈ P(t, X (t))(η,ξ) a.e. t ∈ I}.

We also define the following sets as applicable in the subsequent result.
For any (t, x), (t0, x0) ∈ I × fA ,ληξ > 0, a real number; η,ξ ∈ D⊗E.

Q(t0,x0),ληξ = {(t, x) ∈ I × fA : dηξ((t, x), (t0, x0))≤ ληξ},

where

dηξ((t, x), (t0, x0)) =max{| t − t0 |,‖ x − x0 ‖ηξ},

Q x0,ληξ = {x ∈ fA :‖ x − x0 ‖ηξ< ληξ},

Qληξ = {x ∈ fA :‖ x ‖ηξ< ληξ},

and set

Qε(η,ξ) = {〈η, xξ〉 : x ∈Qε}.

In what follows, we make the following assumptions:
I = [t0, T], ληξ > 0 and Ω⊂ I × fA , open, such that:

(i) I ×Q x0, T
2
ληξ
⊆ Ω,

(ii) ∃ λM ,ηξ > 0 ∀ M ∈ {E, F, G, H} with maxM λM ,ηξ < ληξ and

(iii) ‖ M(t, x) ‖ηξ≤ λM ,ηξ for each M on I ×Q x0, T
2
ληξ

.
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Lemma 1. Suppose that K ⊆ I × fA is compact.
For arbitrary pair η,ξ ∈ D⊗E, suppose that the multivalued map

(t, x)→ M(t, x)(η,ξ)

is lower semicontinuous for each M ∈ {µE,νF,σG, H}.
For ε > 0 , set

ωηξ,ε(t, x) = sup{ωηξ :
⋂

(τ,ζ)∈Q(t,x),ωηξ

M(τ,ζ)(η,ξ) +Qε(η,ξ) 6= ;}. (5)

Then

(a) for some ωε > 0 we have

ωηξ,ε(t, x)≥ωε for all (t, x) ∈ I × fA ,η,ξ ∈ D⊗E,

(b) for every continuous u , (t, u(t)) ∈ K , there exists a measurable map t → v(t)(η,ξ), such
that

dηξ((t, x), (t, u(t)))<ωε,

implies
d(v(t)(η,ξ), M(t, x)(η,ξ))≤ ε.

Proof. (a) The definition of lower semicontinuity implies that the set inside brackets in (4)
is non-empty , so that ωηξ,ε(t, x) is positive.
We claim that it is a continuous function.
Fix σ > 0 arbitrarily, and remark that whenever dηξ((τ1,ζ1), (τ2,ζ2))<

σ
3

,

Q1 =Q(τ1,ζ1),ωε((τ2,ζ2)−
2σ
3
) ⊂Q(τ2,ζ2),ωε((τ2,ζ2)−

σ
3
) =Q2

that is,
⋂

(τ,ζ)∈Q2

M(τ,ζ)(η,ξ) +Qε(η,ξ) 6= ; ⇒
⋂

(τ,ζ)∈Q1

M(τ,ζ)(η,ξ) +Qε(η,ξ) 6= ;.

Whenever dη,ξ((t, x), (t∗, x∗))< σ
3

, setting (t, x) = (τ1,ζ1), (t∗, x∗) = (τ2,ζ2) we obtain

ωηξ,ε(t, x)≥ωηξ,ε(t
∗, x∗)−

2σ

3

while interchanging (t, x) and (t∗, x∗), we have

ωηξ,ε(t, x)≥ωηξ,ε(t
∗, x∗)−

2σ

3
.
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Hence (t, x)→ωηξ,ε(t, x) is a continuous and positive map defined on a compact set.
(b) We define the map Φ, given by

(t, x)→ Φ(t, x)(η,ξ) =
⋂

(τ,ζ)∈Q(t,x),ωε

M(τ,ζ)(η,ξ) +Qε(η,ξ). (6)

Then Φ is lower semicontinuous . In fact let y∗ be in Φ(t∗, x∗)(η,ξ), so that for every (τ,ζ)
in Q(t∗,x∗),ωε ,

d(y∗, M(τ,ζ)(η,ξ)) = ε−ωηξ,ε(τ,ζ), ωηξ,ε(τ,ζ)> 0

or equivalently , there exists yη,ξ(τ,ζ) in M(τ,ζ)(η,ξ) so that | y∗− yηξ(τ,ζ) |≤ ε− σ
2

.
By the lower semicontinuity of M , there exists δ = δ(τ,ζ) so that (τ′,ζ′) in Q(τ,ζ),δ implies
d(yηξ(τ,ζ), M(τ′,ζ′)(η,ξ))< σ

2
, hence, in particular

d(y∗, M(τ′,ζ′)(η,ξ))< ε.

The open set
U =

⋃

(τ,ζ)∈Q(t∗ ,x∗),ωε

Q(τ,ζ),δ(τ,ζ)

contains the compact set Q(t∗,x∗),ωε , hence, whenever

dηξ((t, x), (t∗, x∗))< ρ,

sufficiently small
Q(t,x),ωε ⊂U ,

and thus
d(y∗, M(τ,ζ)(η,ξ))< ε or y∗ ∈ Φ(t, x)(η,ξ).

Since the map t → Φ(t, x)(η,ξ) is lower semicontinuous and has closed values, then by
Theorem 2.14.2 [1] there exists a measurable selection v(t)(η,ξ) of M(t, x)(η,ξ), which is
the required selection.

Proposition 2. Assume that the following holds

(i) For arbitrary η,ξ ∈ D⊗E, the multivalued map (t, x) → G(t, x)(η,ξ) is lower semicon-
tinuous.

(ii) g : I × fA → sesq(D⊗E) is continuous single-valued map, and

(iii) ε : fA → R+ is lower semicontinuous.

Then the map (t, x)→ Φ(t, x)(η,ξ) defined by

Φ(t, x)(η,ξ) = Bε(x)(g(t, x)(η,ξ))
⋂

G(t, x)(η,ξ)

is lower semicontinuous on its domain.
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Proof. Fix (t∗, x∗) in DomΦ, y∗ηξ ∈ Φ(t
∗, x∗)(η,ξ) and ω> 0. For some

σ > 0, | y∗ηξ− g(t∗, x∗)(η,ξ) |= ε(x∗)−σ.

There exists δ1 such that to any (t, x) ∈ I× fA with dηξ((t, x), (t∗, x∗))< δ1, we can associate
y(t, x)(η,ξ) in G(t, x)(η,ξ) so that

| yηξ,(t,x)− y∗ηξ |<min{ω,
σ

3
},

and δ2 such that
dηξ((t, x), (t∗, x∗)< δ2

implies

ε(x)> ε(x∗)−
σ

3
,

and δ3 such that
dηξ((t, x), (t∗, x∗)< δ3

implies | g(t∗, x∗)(η,ξ)− g(t, x)(η,ξ) |< σ
3

.
Then when dηξ((t, x), (t∗, x∗)<min{δ1,δ2,δ3},

| y(t, x)(η,ξ)− g(t, x)(η,ξ) | ≤| y(t, x)(η,ξ)− y∗ηξ |+ | y∗ηξ− g(t∗, x∗)(η,ξ) |

+ | g(t∗, x∗)(η,ξ)− g(t, x)(η,ξ) |

<
σ

3
+ ε(x∗)−σ+

σ

3

=ε(x∗)−
σ

3
< ε(x)

that is y(t, x)(η,ξ) ∈ Φ(t, x)(η,ξ), and

| y∗(t, x)(η,ξ)− y(t, x)(η,ξ) |<ω.

We now prove the existence of solution of Lower semicontinuous quantum stochastic differ-
ential inclusions.

Theorem 1. Suppose that the following holds:

(i) For every η,ξ ∈ D⊗E, the map (t, x)→ P(t, x)(η,ξ) is a non-empty compact and lower
semicontinuous multifunction.

(ii) (t0, x0) ∈ I × fA , for all (t, x) ∈ I ×Q x0, T
2
λ, λ > 0, such that | P(t, x)(η,ξ) |< λ.

Then there exists a set Kηξ and a continuous map ϕ :Kηξ→ L1(I), a selection of Fηξ.

Proof. We shall first show the existence of a finite number m(0) of measurable maps vi
from I into Qλ(η,ξ); of a continuous partition of I into J 0

i = [τ
0
i−1,τ0

i ] with characteristic
functions χi such that setting

g0(u)(t)(η,ξ) =
∑

χ0
i (t)vi(t)(η,ξ),
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we have for every t:
d(g0(u)(t)(η,ξ),P(t, u(t))(η,ξ))< 1. (7)

In fact,set in Lemma(1), M to be P , ε to be 1 and let ω0 be the constant provided by (a).
Let U i = Qui ,ω0

, we define U i(η,ξ) = {〈η, xξ〉 : x ∈ U i} a finite open covering of the
compact Kηξ. Let vi(t)(η,ξ), be the corresponding measurable functions as provided by (b).
Fix u and t ; where | χ0

i (u)(t)(η,ξ) |> 0, u is in Qui ,ω0
, d(vi(t)(η,ξ),P(t, u(t))(η,ξ)) < 1,

and (6) holds.
We claim that for n = 0, 1, ... we can define ; m(n) measurable functions v(n)i from I into

Qλ(η,ξ), a continuous partition of I , J (n)i = [τ(n)i−1(u),τ
(n)
i (u)] having characteristic functions

χ
(n)
i such that setting

g(n)(u)(t)(η,ξ) =
∑

χ
(n)
i (t)v

(n)
i (t)(η,ξ),

we have

(i) for every t,

d(g(n)(u)(t)(η,ξ),P(t, u(t))(η,ξ))<
1

2n

except on a finite number of intervals , having total length 1
2n ,

(ii)

| g(n)(u)(t)(η,ξ)− g(n−1)(u)(t)(η,ξ) |<
1

2n+1 , n≥ 1.

Assume the above to hold up to n= ν − 1, we shall prove that it holds for n= ν .
There exists an open set S ν such that all the maps t → v(ν−1)

i (t)(η,ξ) are continuous on
I \S ν , and the measure of S ν is smaller than 1

2ν+1 .
Let δ > 0 be such that ‖ w− u ‖ηξ< δ implies that for each i,

| τ(ν−1)
i (u)−τ(ν−1)

i (w) |< (2−ν(4m(ν −1)))−1. A finite number of Qû j ,δ coversK . For each j
call E j the finite union of open intervals | t −τi(û j) |< (2−ν(4(ν − 1)))−1, i = 1, ..., m(ν − 1).
Then whenever u is in Qû j ,δ, when t is any of the closed intervals whose union is I \ E j ,

gν−1(u)(t)(η,ξ) = gν−1(û)(t)(η,ξ) = vν−1
i (t)(η,ξ) for some i.

Hence when t belongs to the closed (I \ E j) \S ν , the map t 7→ gν−1u(t)(η,ξ) is continuous.
Set | ρνj (t)(η,ξ) | to be 2λ on the open (E j ∪S ν) and to be 1

2ν−1 on the closed I \ (E j ∪S ν).
The map (t, x)→ P j(t, x)(η,ξ) is defined by

P j(t, x)(η,ξ) =Qgν−1(û j)(t)(η,ξ),|ρνj (t)(η,ξ)|(η,ξ)
⋂

P(t, x)(η,ξ)

is strict for (t, x) in Q(t,û j(t)),δ.

In fact, when t is in (E j ∪ S ν). It is enough to remark that both gν−1 and P take values in
Qλ(η,ξ).
Let (t, x) : t in I \ (E j ∪S ν), ‖ x − û j(t) ‖ηξ< δ. Then a translate u(.) of û j(.) is in Qû j(.),δ
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and is such that u(t) = x . For this u, gν−1(u)(t)(η,ξ) = gν−1(û j)(t)(η,ξ) and, by point (i) of
the induction

d(gν−1(u)(t)(η,ξ),P(t, x)(η,ξ))<
1

2ν−1 .

Since t → ρν(t) is lower semicontinuous and P j is strict, proposition 2 implies that
(t, x)→ P j(t, x)(η,ξ) is lower semicontinuous. Set in Lemma 1, M to be P j , ε to be 1

2ν+1 and
call ω j the constant provided by point (a). A finite number of Qui

j ,ω j
(η,ξ) covers the compact

Kηξ ∩Qû j ,δ(η,ξ) By Lemma 1(b), there exists for each i a measurable v i
j(t)(η,ξ) such that

dηξ((t, x), (t, ui
j(t)))<ωi implies

d(v i
j(t)(η,ξ),P j(t, x)(η,ξ))≤

1

2ν+1 <
1

2ν
. (8)

The collection of open sets U i
j (η,ξ) = Qû j ,δ(η,ξ) ∩Qui

j ,ω j
(η,ξ) covers Kηξ. Let χ i

j be the

characteristic functions of the corresponding continuous partition {F j
ηξ,i} of I . Set

gν(u)(t)(η,ξ) =
∑

i, j

χ i
j(t)v

i
j(t)(η,ξ).

We claim that the functions v i
j and the map gν satisfy our induction assumptions.

Fix u and t. Whenever t belongs to J j
i (u), gν(u)(t)(η,ξ) = v i

j(t)(η,ξ) and u belongs to
Qui

j ,w j
, and by (7),

d(v i
j(t)(η,ξ),P j(t, u(t))(η,ξ))<

1

2ν
. (9)

Since P j(t, u(t))(η,ξ)⊂ P(t, u(t))(η,ξ), (8) check point (i).
To check point (ii) , assume t in I \ (E j ∪S ν). Then ρν(t) = 1

2ν−1 ,

P j(t, x)(η,ξ))⊂Qgν−1(û j)(t)(η,ξ), 1
2ν−1
=Qgν−1(u)(t)(η,ξ), 1

2ν−1

hence

d(v i
j(t)(η,ξ),Qgν−1(u)(t)(η,ξ), 1

2ν−1
(η,ξ))<

1

2ν
(10)

or

| gν(u)(t)(η,ξ)− gν−1(u)(t)(η,ξ) |<
1

2ν+1
(11)

except on an open set (E j ∪S ν) with measure at most 1
2ν

. The sequence of measurable maps
{gn(u)(.)(η,ξ)} is a Cauchy sequence converging to some measurable function that we denote
by g(u)(.)(η,ξ) and g(u)(t)(η,ξ) ∈ P(t, u(t))(η,ξ).
Let Kηξ be defined by:

Kηξ = {u(t)(η,ξ) = 〈η, u(t)ξ〉 ∈ Kηξ : u(t)(η,ξ) is Lipschitzian and u(t0)(η,ξ) = x0}.
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The continuous map ϕ : Kηξ→ Kηξ defined by ϕ(〈η, u(t)ξ〉) = 〈η,ϕ(u)(t)ξ〉

〈η,ϕ(u)(t)ξ〉= x0+

∫ t

t0

g(u)(s)(η,ξ)ds,

| 〈η,ϕ(u)(t2)ξ〉 − 〈η,ϕ(u)(t1)ξ〉 | which gives

|
∫ t2

t1

g(u)(s)(η,ξ)ds |<‖ g ‖|
∫ t2

t1

u(s)(η,ξ)ds |

∈ Kηξ.

Moreover,
d

d t
〈η,ϕ(u)(t)ξ〉= g(u)(t)(η,ξ) ∈ P(t, u(t))(η,ξ).

We are left to show the continuity of ϕ. In fact, we shall show directly that ϕ is uniformly
continuous.
From a(ii) above, for every η,ξ ∈ D⊗E, u(t)(η,ξ) ∈ Kηξ

∫

I

| gν+1(u)(s)(η,ξ)− gν(u)(s)(η,ξ) | ds ≤
2T

2ν+1 +
2M

2ν+1

=
T +M

2ν

so that
∫

I

| gn+1(u)(s)(η,ξ)− gn(u)(s)(η,ξ) | ds+

∫

I

| gn+2(u)(s)(η,ξ)− gn+1(u)(s)(η,ξ) | ds+ ...

≤ (
1

2n )(T +M)(1+
1

2
+

1

4
+ ...)

=
T +M

2n−1 ,

and since
∫

I
| gν(u)(s)(η,ξ)− g(u)(s)(η,ξ) | ds converges to 0,

| ϕ(〈η, u(t)ξ〉)−ϕ(〈η, w(t)ξ〉) |≤
∫ t

t0

| g(u)(s)(η,ξ)− g(w)(s)(η,ξ) | ds

≤
∫

I

| gn(u)(s)(η,ξ)− gn(w)(s)(η,ξ) | ds+

∫

I

| gn(u)(s)(η,ξ)− g(u)(s)(η,ξ) | ds

+

∫

I

| gn(w)(s)(η,ξ)− g(w)(s)(η,ξ) | ds

≤
∫

I

| gn(u)(s)(η,ξ)− gn(w)(s)(η,ξ) | ds+
4(T +M)

2n .
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Also, by a(ii)
∫

I

| gn(u)(s)(η,ξ)− gn(w)(s)(η,ξ) | ds ≤
2M

2n+1

=
M

2n .

Therefore | u(t)(η,ξ)−w(t)(η,ξ) |≤ δ implies, for every t ∈ I ,

| 〈η,ϕ(u)(t)ξ〉 − 〈η,ϕ(w)(t)ξ〉 | ≤
T + 5M

2n

≤ ε.

Proving the continuity of ϕ. Hence ϕ is the required selection of Fηξ.

From above we have the following existence result.

Corollary 1. For an arbitrary η,ξ ∈ D⊗E, suppose that multivalued stochastic processes

M : I × fA → 2sesq.(D⊗E)2 , M ∈ {µE,νF,σG, H}

are compact-valued, lower semicontinuous multifunction.
Let (t0, x0) ∈ I × fA .
Then the problem

dX (t) ∈ E(t, X (t))dΛπ(t) + F(t, X (t))dA f (t)

+ G(t, X (t))dA+g (t) +H(t, X (t))d t almost all t ∈ I ,

X (t0) = x0

(12)

has at least one solution defined on I lying in Ad( fA )wac ∩ L2
loc( fA ).
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