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1. Introduction

We show how the function properties prove the integral

∫ ∞

1

ψ(x)− x

x
3

2
+ε

d x

converges absolutely and uniformly for ∀ε > 0, which concludes the integral

∫ ∞

1

ψ(x)− x

x s+1
d x

is analytic for Re(s)> 1

2
, thus this concludes the proof of the form

ψ (x) = x +O(x
1

2
+ε)

for ∀ε > 0.
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2. Preliminaries

2.1. Basic Properties of The Zeta Function

For Re(s)> 1 we know that the zeta function defined by the series

∞
∑

n=1

1

ns

and the Euler product
∏

p

(1− p−s)−1,

namely

ζ(s) =

∞
∑

n=1

1

ns
=
∏

p

(1− p−s)−1.

The series converges absolutely and uniformly for Re(s)≥ 1+δ, with any δ > 0, and the prod-

uct converges absolutely and uniformly for Re(s)≥ 1+δ, with any δ > 0. The representation

of the zeta function as such a product shows that ζ(s) 6= 0 for Re(s)> 1.

In fact,we often obtain the following identities,valid for Re(s)> 1:

ζ(s) =

∞
∑

n=1

n−s =

∞
∑

n=1

s

∫ ∞

n

d x

x s+1
= s

∫ ∞

1

 

∑

n≤x

1

!

d x

x s+1
= s

∫ ∞

1

[x]

x s+1
d x ,

and

s

∫ ∞

1

[x]

x s+1
d x =

s

s− 1
− s

∫ ∞

1

{x}

x s+1
d x .

The symbol [x] denotes the greatest integer ≤ x , it is called the integral part of x , the number

{x} = x − [x] is called the fractional part of x , it satisfies the inequalities 0 ≤ {x} < 1, with

{x}= 0 if and only if x is an integer.

We know the integral
∫ ∞

1

{x}

x s+1
d x

converges absolutely, and uniformly for Re(s)≥ δ, with any δ > 0.

Also, for Re(s)> 1 we know the identity (ii):

φ(s) =−
ζ′(s)

ζ(s)
=

∞
∑

n=1

Λ(n)

ns
=
∑

p

log p

ps − 1
= s

∫ ∞

1

ψ(x)

x s+1
d x =

s

s− 1
+ s

∫ ∞

1

ψ(x)− x

x s+1
d x ,

where the sum
∑

p

log p

ps − 1

is extended over all primes.
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We define

ψ(x) =
∑

pm≤x

log p =
∑

n≤x

Λ(n).

The Λ(n) is log p when ∃m≥ 1 such that n= pm, or otherwise it is 0. Where the sum is taken

over those integers of the form pm that are less than or equal to x . Here p is a prime number

and m is a positive integer.We also see that ζ(1+ i t) 6= 0, ζ(i t) 6= 0, and when the function

ζ′/ζ(s) has no poles on the region 1 > Re(s) > 1

2
, then which implies that the function ζ(s)

has no zeros on the region 1> Re(s)> 1

2
.

We intimately know the result

−ζ′/ζ(s) =
∑

p

log p

ps − 1

for Re(s)> 1, and the identity (ii):

φ(s) =−ζ′/ζ(s) =
s

s− 1
+ s

∫ ∞

1

ψ(x)− x

x s+1
d x for Re(s)> 1.

We define

Φ(s) =
∑

p

logp

ps

for Re(s) > 1. Here p is a prime number. The sum defining Φ(s) converges uniformly and

absolutely for Re(s)≥ 1+δ, by the same argument as for the sum defining the zeta function.

We merely use the fact that given ε > 0,

log n≤ nε for all n≥ n0(ε).

Since

ex = 1+ x + . . .+
xn

n!
+

xn+1

(n+ 1)!
+ . . . ,

it follows that for positive x and for all n, we have

x−nex >
x

(n+ 1)!
.

For any fixed n the right-hand side tends to infinity as x →∞, it follows that ex grows faster

than any fixed power of x . We can write xn = o(ex) to mean

lim
x→∞

xn

ex
= 0

for all n. We see that log x = o(xδ), δ > 0. In other words log x grows slower than any fixed

positive power n of x .
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2.2. Basic Results

In a way, we need go through the basic definitions with their results concerning functions,

and we omit some definitions and proofs which are just elementary knowledge such as:

We recall the notation: f = O(g) mean that f , g are two functions of a variable x defined

for all sufficiently large, and g is positive, there exists a constant C > 0 such that
�

� f (x)
�

� ≤ C g(x) for all x sufficiently large. In fact,we have ψ(x) = x +O(xλ) for 1

2
≤ λ < 1,

and ψ(x) = O(x).

We also recall the results, let ρ be all nontrivial zeros of ζ(s), we know

ψ(x) = x + O(x supRe(ρ)+ε) for every ε > 0. Intimately, we can get λ ≥ sup Re(s) + ε by the

result that ζ(s) has no zero on the region Re(s) > λ. Using a basic fact from properties of the

zeta function that ζ(s) certainly has an infinite number of the nontrivial zeros in the region

Re(s)≥ 1

2
and the symmetry of the zeros such that we have λ ≥ 1

2
.

We recall the definitions:Let U be a subset of the complex plane, we say that U is open set

if for every point z in U , there is a disc D (z, r) of radius centered at z such that this disc D (z, r)

is contained in U . And we know a set what is called closed,what is called bounded,what is

called continuous,compact.We also know a series of sequence and a series of functions what

is said to converge uniformly, converge absolutely. We have the usual tests for compact sets,

and some for convergence, etc, those definitions with their results.

2.3. Some Theorems

We make the precise theorems omitted its proof as follows [cf. 1].

Theorem 1. A set of complex numbers is compact if and only if it is closed and bounded.

Theorem 2. Let S be a compact set of complex numbers,and let f be a continuous function on

S. Then the image of f is compact.

Theorem 3. Let S be a compact set of complex numbers, and let f be a continuous function on

S. Then f is uniformly continuous, i.e. given ε there exists δ such that whenever z, w ∈ S and

|z −w|< δ, then
�

� f (z)− f (w)
�

�< ε.

Theorem 4. Let γ be a path in an open set U and let g be a continuous function on γ (i.e. on

the image γ ([a, b]) if γ is defined on [a, b]). If z is not on γ, define

f (z) =

∫

γ

g(ζ)

ζ− z
dζ.

Then f is analytic on the complement of γ in U, and its derivatives are given by [cf. 1, pp.130-

131]

f (n)(z) = n!

∫

γ

g(ζ)

(ζ− z)n+1
dζ.
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Let f be a continuous function on the real numbers ≥ 0 and assume that there is constants

A, B such that
�

� f (t)
�

� ≤ AeBt for all t sufficiently large. Moreover ,and assume for simplicity

that f is bounded, piecewise continuous, whence B ≤ 0. What we prove will hold under much

less restrictive conditions: instead of piecewise continuous,it would suffice to assume that the

integral
∫ b

a

�

� f (t)
�

� d t

exists for every pair of numbers a, b ≥ 0. We shall associate to f the Laplace transform g

defined by

g(z) =

∫ ∞

0

f (t)e−zt d t

for Re(z) > 0, we can then apply Lemma 1 (the differentiation lemma) of subsection 4.2,

whose proof applies to a function satisfying our conditions (piecewise continuous and bounded),

and then we easily conclude that g is analytic for Re(z)> 0.

3. The Three Basic Theorems

Theorem 5. The function Φ is meromorphic for Re(s)> 1

2
. Furthermore, for Re(s)≥ 1, we have

ζ(s) 6= 0 and

Φ(s)−
1

s− 1

has no poles for Re(s)≥ 1.

Proof. For Re(s)> 1 the Euler product shows that ζ(s) 6= 0. We know the result

−ζ′/ζ(s) =
∑

p

log p

ps − 1

for Re(s)> 1, and the identity (ii):

φ(s) =−ζ′/ζ(s) =
s

s− 1
+ s

∫ ∞

1

ψ(x)− x

x s+1
d x .

Using the geometric series we get the expansion

1

ps − 1
=

1

ps
×

1

1− 1

ps

=
1

ps

�

1+
1

ps
+

1

p2s
+ . . .

�

=
1

ps
+

1

p2s
+ . . . (1)

So the identity (ii) it satisfies

−ζ′/ζ(s) = Φ(s) +
∑

p

hp(s), where
�

�hp(s)
�

�≤ B
log p
�

�p2s
�

�

for some constant B. (2)
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But the series
∑ log n

n2s

converges absolutely and uniformly for Re(s) ≥ 1

2
+ δ, with any δ > 0, and we know the

intimate result that the function ζ(s) − 1

s−1
extends to an analytic function on the region

Re(s) > 0, this result and (ii) imply that Φ is meromorphic for Re(s) > 1

2
, and has a pole at

s = 1 and at the zeros of ζ, but no other poles in this region. We omit the proof that ζ has no

zero on the line Re(s) = 1, which is just the intimate result.

We shall now prove special cases of the following theorems concerning differentiation

under the integral sign which are sufficient for our applications. We first prove a general

theorem that the uniform limit of analytic functions is analytic. This will allow us to define

analytic functions by uniformly convergent series.

Theorem 6. Let
�

fn

	

be a sequence of analytic functions on an open set U. Assume that for each

compact subset Kof U the sequence converges uniformly on K, and let the limit function be f , i.e.

lim fn = f . Then f is analytic.

Proof. z0 ∈ U , and let D̄R be a closed disc of radius R centered at in z0 and contained

in U . Then the sequence
�

fn

	

converges uniformly on D̄R. Let CR be the circle which is the

boundary of D̄R. Let D̄ R

2
be the closed disc of radius R

2
centered at z0. Then for z ∈ D̄ R

2
we

have

fn(z) =
1

2πi

∫

CR

fn(ζ)

ζ− z
dζ,

and |ζ− z| ≥ R

2
. Since

�

fn

	

converges uniformly to f (z), for
�

�z − z0

�

�≤ R

2
, we get

f (z) =
1

2πi

∫

CR

f (ζ)

ζ− z
dζ.

By Theorem 4 it follows that f is analytic on a neighborhood of z0. Since this is true for every

z0 in U , we have proved what we wanted.

Theorem 7. Let
�

fn

	

be a sequence of analytic functions on an open set U converging uniformly

on every compact subset K of U to a function f . Then the sequence of derivatives
�

fn
′	 converges

uniformly on every compact subset K, and lim fn
′ = f ′.

Proof. Cauchy’s formula expresses the derivative fn
′ as an integral, cover the compact set

with a finite number of closed discs contained in U , and sufficiently small radius. And one can

argue as in the previous Theorem 6. For the sake of completeness we shortly state the similar

result,and we have

fn(z) =
1

2πi

∫

CR

fn(ζ)

ζ− z
dζ,
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and |ζ− z| ≥ R

2
. Since

�

fn

	

converges uniformly to f (z), i.e. lim fn = f , for
�

�z − z0

�

� ≤ R

2
, we

get

f (z) =
1

2πi

∫

CR

f (ζ)

ζ− z
dζ.

By Theorem 4, we obtain a bound for the derivative of an analytic function in term of the

function itself, we see that

fn
′(z) =

1

2πi

∫

CR

fn(ζ)

(ζ− z)2
dζ,

and

f ′(z) =
1

2πi

∫

CR

f (ζ)

(ζ− z)2
dζ,

and

lim fn = f .

Therefore

lim fn
′ = f ′.

4. The Three Main Lemmas

4.1. Stating Some Basic Conditions

We know that the form

ψ(x) = x +O(x
1

2
+ε)

for ∀ε > 0 implies the Riemann Hypothesis.We shall now prove the main lemmas, which

constitute the delicate part of the proof.

We shall also deal with integrals depending on a parameter. This means a function f of

two variables, f (t, z), where z in some domain U in the complex numbers, and we let D1 f and

D2 f be the partial derivatives of f with respect to the first and second variable respectively.

The integral
∫ ∞

0

f (t, z)d t = lim
B→∞

∫ B

0

f (t, z)d t

is said to be uniformly convergent for z ∈ U if, given ε, there exists B0 such that B0 < B1 < B2,

then
�

�

�

�

�

∫ B2

B1

f (t, z)d t

�

�

�

�

�

< ε.

The integral is absolutely and uniformly convergent for z ∈ U if the same condition holds with

f (t, z) replaced by the absolute value
�

� f (t, z)
�

�.
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4.2. The Three Lemmas

Lemma 1 (The Differention Lemma). Let I be an interval of real numbers, possibly infinite. Let

U be an open set of complex numbers.Let f = f (t, z) be a continuous function on I×U. Assume:

(i) For each compact subset K of U, the integral

∫

I

f (t, z)d t

is uniformly convergent for z ∈ K.

(ii) For each t the function z 7→ f (t, z) is analytic.

Let

F(z) =

∫

I

f (t, z)d t.

Then F is analytic on U, D2 f (t, z) satisfies the same assumptions as f , and

F ′(z) =

∫

I

D2 f (t, z)d t.

Proof. Let
�

In

	

be a sequence of finite closed interval, increasing to I . Let D be a disc in

the z-plane whose closure is contained in U . Let γ be the circle bounding D. Then for each z

in D, we have

f (t, z) =
1

2πi

∫

γ

f (t,ζ)

ζ− z
dζ,

So

F(z) =
1

2πi

∫

I

∫

γ

f (t,ζ)

ζ− z
dζd t.

If γ has radius R center z0, consider only z such that
�

�z − z0

�

�≤ R

2
, then

�

�

�

�

1

ζ− z

�

�

�

�

≤
2

R
.

For each n we can define

Fn(z) =
1

2πi

∫

In

∫

γ

f (t,ζ)

ζ− z
dζd t.

In view of the restriction on z above, we may interchange the integrals and get Cauchy’s

formula expresses the Fn as an integral, covering the compact set with a finite number of

closed discs contained in U , and sufficiently small radius, i.e.

Fn(z) =
1

2πi

∫

γ

1

ζ− z





∫

In

f (t,ζ)d t



 dζ.
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We can apply our conditions that the integral
∫

I

f (t, z)d t

is uniformly convergent and f = f (t, z) is uniformly continuous on the compact subset I × K

of I × U , we obviously get that
∫

I

f (t, z)d t

is continuous on the compact subset K of U on the γ.

Hence
∫

In

f (t, z)d t

is continuous on the path γ. Then Fn is analytic by Theorem 4.

By Theorem 6 and Theorem 7 with our assumption,the integrals over In converge uni-

formly to the integral over I . Hence F is analytic,being the uniform limit of the function Fn

for
�

�z − z0

�

�≤ R

2
. On the other hand, Fn

′(z) is obtained by Theorem 7, and converges uniformly

to F ′(z), i.e. the uniform limit of Fn
′(z) is:

lim Fn
′(z) = F ′(z) =

∫

I

D2 f (t, z)d t.

This proves the theorem.

Lemma 2. Let f be bounded, piecewise continuous on the real numbers ≥ 0. Let f the Laplace

transform g defined by

g(z) =

∫ ∞

0

f (t)e−zt d t

for Re(z) > 0, then g is analytic in the region Re(z) > 0. If g extends to an analytic function for

Re(z)≥ 0, then
∫ ∞

0

f (t)d t

exists and is equal to g(0).

Proof. Let B be a bound for f (t), that is
�

� f (t)
�

� ≤ B for all t ≥ 0, then we can apply the

differentiation lemma to conclude that g is analytic in the region Re(z)> 0, we omit its proof

which is just a intimate result.

For T > 0 define

gT (z) =

∫ T

0

f (t)e−zt d t.

Then gT is an entire function,as follows at once by the differentiation lemma. We have to

show that

lim
T→∞

gT (0) = g(0).
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Let δ > 0 and let C be the path consisting of the line segment Re(z) = −δ and the arc of circle

|z|= R and Re(z)≥−δ, as shown on the Figure 1.

Figure 1: Line segment Re(z) = −δ and the arc of circle |z|= R and Re(z)≥ −δ.

By our assumption that g extends to an analytic function for Re(z) ≥ 0, we can take δ

small enough so that g is analytic on the region bounded by C , and on its boundary. Then

g(0)− gT (0) =
1

2πi

∫

C

(g(z)− gT (z))e
Tz

�

1+
z2

R2

�

dz

z
=

1

2πi

∫

C

HT (z)dz,

where HT (z) abbreviates the expression under the integral sign. Let B be a bound for f (t),

that is
�

� f (t)
�

�≤ B for all t ≥ 0.

Let C+ be the semicircle |z|= R, and Re(z)≥ 0. Then
�

�

�

�

�

1

2πi

∫

C+
HT (z)dz

�

�

�

�

�

≤
2B

R
. (3)

First note that for Re(z)> 0 we have

�

�g(z)− gT (z)
�

�=

�

�

�

�

�

∫ ∞

T

f (t)e−zt d t

�

�

�

�

�

≤ B

∫ ∞

T

�

�e−zt
�

� d t =
B

Re(z)
e−Re(z)T ;
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and for |z|= R,

�

�

�

�

�

eTz(1+
z2

R2
)
1

z

�

�

�

�

�

= eRe(z)T

�

�

�

�

R

z
+

z

R

�

�

�

�

1

R
= eRe(z)T

2 |Re(z)|

R2
.

Taking the product of the last two estimates and multiplying by the length of the semicircle

gives a bound for the integral over the semicircle,and proves the claim.

Let C− be the part of the path C with Re(z)< 0. We wish to estimate

1

2πi

∫

C

�

g(z)− gT (z)
�

eTz

�

1+
z2

R2

�

dz

z
.

Now we estimate separately the expression under the integral with g and gT .

We have
�

�

�

�

�

1

2πi

∫

C−
gT (z)e

Tz

�

1+
z2

R2

�

dz

z

�

�

�

�

�

≤
B

R
. (4)

Let S− be the semicircle with |z|= R and Re(z)< 0. Since gT is entire, we can replace C−

by S− in the integral without changing the value of the integral, because the integrand has no

poles to the left of the y-axis. Now we estimate the expression under the integral sign on S−.

We have
�

�gT (z)
�

�=

�

�

�

�

�

∫ T

0

f (t)e−zt d t

�

�

�

�

�

≤ B

∫ T

0

e−Re(z)t ≤
Be−Re(z)T

−Re(z)
.

For the other factor we use the same estimate as previously. We take the product of the two

estimates,and multiply by the length of the semicircle to give the desired bound in (4).

Third, we claim that
∫

C−
g(z)eTz

�

1+
z2

R2

�

dz

z
→ 0, (5)

as T →∞.

We can write the expression under the integral sign as

g(z)eTz

�

1+
z2

R2

�

1

z
= h(z)eTz, where h(z) is independent of T

Given any compact subset K of the region defined by Re(z)< 0, we note that eTz → 0 rapidly

uniformly for z ∈ K , as T →∞.

The word "rapidly" means that the expression divided by any power T N also tends to 0

uniformly for z in K , as T →∞. From this our claim (5) follows easily.

We may now prove the Lemma 2. We have

∫ ∞

0

f (t)d t = lim
T→∞

gT (0),
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if this limit exists.

But given ε, pick R so large that 2B

R
< ε. Then by (5), pick T so large that

�

�

�

�

�

∫

C−
g(z)eTz

�

1+
z2

R2

�

dz

z

�

�

�

�

�

< ε.

Then by (3), (4) and (5) we get
�

�g(0)− gT (0)
�

�< 3ε. This proves Lemma 2.

We claim that it also concludes the integral

∫ ∞

1

ψ(x)− x

x
3

2
+ε

d x

is convergent for ∀ε > 0.

Observe that the function ψ is piecewise continuous. In fact, it is locally constant: there

is no change in ψ between prime numbers. The application of Lemma 2 is to prove:

Lemma 3. The pair of integrals
∫ ∞

1

ψ(x)− x

x
3

2
+ε

d x ,

and
∫ ∞

1

�

�ψ(x)− x
�

�

x
3

2
+ε

d x

converge for ∀ε > 0.

Proof. Let

f1(t) =
ψ(et)− et

e(1−(λ0−λ))t
,

and

f2(t) =

�

�ψ(et)− et
�

�

e(1−(λ0−λ))t
,

where λ satisfies the conditions ψ(x) = x + O(xλ), 1

2
≤ λ < 1, given λ0 ≤ λ −

1

2
− ε for

∀ε > 0, show that given any λ0 ≤ λ−
1

2
−ε satisfies 1− (λ0−λ)≥

3

2
+ε for ∀ε > 0 including

the case 1− (λ0−λ) =
3

2
+ ε, and where λ0 is dependent of ε, λ can be independent of ε.

Then fi is certainly piecewise continuous, and is bounded by the formulas ψ(x) = O(x)

and ψ(x) = x +O(xλ) for 1

2
≤ λ < 1, where i = 1,2. Making the substitution x = et in the

desired integral, d x = et d t, we see that

∫ ∞

1

ψ(x)− x

x
3

2
+ε

d x =

∫ ∞

0

f1(t)d t,

and
∫ ∞

1

�

�ψ(x)− x
�

�

x
3

2
+ε

d x =

∫ ∞

0

f2(t)d t.
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Therefore these suffice to prove that the integrals on the right converge, it suffices to prove

that the Laplace transform gi of fi is analytic for Re(z)≥ 0, so we have to compute the Laplace

transform gi . We claim that in the case i = 1,

g1(z) =
φ
�

z + 1− (λ0−λ)
�

z + 1− (λ0−λ)
−

1

z − (λ0−λ)
.

Once we have proved the formula, we can then apply Theorem 5 and the identity (ii) to

conclude that g1(z) is analytic for Re(z)≥ 0, thus concluding the part of the proof of Lemma 3.

Now to compute gi(z) when i = 1, we use the identity (ii) we obtain

φ(s)

s
−

1

s− 1
=

∫ ∞

1

ψ(x)− x

x s+1
d x ,

and

g1(z) =
φ
�

z + 1− (λ0−λ)
�

z + 1− (λ0−λ)
−

1

z − (λ0−λ)
=

∫ ∞

1

ψ(x)− x

xz+2−(λ0−λ)
d x

=

∫ ∞

0

ψ(et)− et

e(z+2−(λ0−λ))t
et d t =

∫ ∞

0

f1(t)e
−zt d t

where Re
�

z + 1− (λ0−λ)
�

> 1, and so Re(z)> λ0−λ, we have λ0−λ ≤ −
1

2
−ε for ∀ε > 0,

which by Theorem 5 and the identity (ii) show that g1(z) is analytic for Re(z) > λ0 − λ, and

then it is analytic for Re(z) ≥ 0. This gives us the Laplace transform of f1 and concludes the

part of the proof of Lemma 3.

We claim that in the case i = 2,

g2(z) =

∫ ∞

0

�

�ψ(et)− et
�

�

e(z+2−(λ0−λ))t
et d t =

∫ ∞

1

�

�ψ(x)− x
�

�

xz+2−(λ0−λ)
d x =

∫ ∞

0

f2(t)e
−zt d t,

where

f2(t) =

�

�ψ(et)− et
�

�

e(1−(λ0−λ))t
,

whence the function converges absolutely for Re(z) ≥ 0 and uniformly for Re(z) ≥ δ with

δ ≥ 0 from the basic fact that the integral

∫ ∞

1

d x

xn

converges absolutely and uniformly for n≥ 1+ k, with any k > 0.

Given any

λ0 ≤ λ−
1

2
− ε

for ∀ε > 0, with

ψ(x) = x +O(xλ),
1

2
≤ λ < 1.
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When Re(z) ≥ 0, we have Re(z) + 2 − λ > 1, Re(z) + 2 − λ0 > 1. Then by Lemma 1 (the

differentiation lemma) which show that gi(z) is analytic for Re(z) ≥ 0 when i = 2. This gives

us the Laplace transform of f2 and concludes the part of the proof of Lemma3.

Hence this proves the lemma.

5. Conclusions

Using Lemma 3 concludes that the integral
∫ ∞

1

ψ(x)− x

x s+1
d x

converges absolutely and uniformly for

Re(s)>
1

2
,

and by Lemma 1 (the differentiation lemma) concludes the integral
∫ ∞

1

ψ(x)− x

x s+1
d x

is analytic for

Re(s)>
1

2
,

which immediately follows that the function ζ′/ζ(s) has no poles on the region

1> Re(s)>
1

2

from the formula (ii), and which implies that the function ζ(s) has no zeros on the region

1> Re(s)>
1

2
.

Thus concluding the proof of the form ψ(x) = x + O(x
1

2
+ε) for ∀ε > 0, and it also

concludes the proof of the Riemann Hypothesis.
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